These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 25818447)
21. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo. Wang Y; Xiao Y; Tang R Chemistry; 2014 Sep; 20(37):11826-34. PubMed ID: 25077695 [TBL] [Abstract][Full Text] [Related]
22. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. Tsai MF; Chang SH; Cheng FY; Shanmugam V; Cheng YS; Su CH; Yeh CS ACS Nano; 2013 Jun; 7(6):5330-42. PubMed ID: 23651267 [TBL] [Abstract][Full Text] [Related]
23. Polymeric near-infrared absorbing dendritic nanogels for efficient in vivo photothermal cancer therapy. Molina M; Wedepohl S; Calderón M Nanoscale; 2016 Mar; 8(11):5852-6. PubMed ID: 26931077 [TBL] [Abstract][Full Text] [Related]
24. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe. Liu J; Han J; Kang Z; Golamaully R; Xu N; Li H; Han X Nanoscale; 2014 Jun; 6(11):5770-6. PubMed ID: 24736832 [TBL] [Abstract][Full Text] [Related]
25. Perfluoropentane-encapsulated hollow mesoporous prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer. Jia X; Cai X; Chen Y; Wang S; Xu H; Zhang K; Ma M; Wu H; Shi J; Chen H ACS Appl Mater Interfaces; 2015 Mar; 7(8):4579-88. PubMed ID: 25646576 [TBL] [Abstract][Full Text] [Related]
26. Engineering phosphopeptide-decorated magnetic nanoparticles as efficient photothermal agents for solid tumor therapy. Wu M; Guo Q; Xu F; Liu S; Lu X; Wang J; Gao H; Luo P J Colloid Interface Sci; 2016 Aug; 476():158-166. PubMed ID: 27214146 [TBL] [Abstract][Full Text] [Related]
27. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy. Huang Y; Lai Y; Shi S; Hao S; Wei J; Chen X Chem Asian J; 2015 Feb; 10(2):370-6. PubMed ID: 25425287 [TBL] [Abstract][Full Text] [Related]
28. A Laser-Activated Biocompatible Theranostic Nanoagent for Targeted Multimodal Imaging and Photothermal Therapy. Deng L; Cai X; Sheng D; Yang Y; Strohm EM; Wang Z; Ran H; Wang D; Zheng Y; Li P; Shang T; Ling Y; Wang F; Sun Y Theranostics; 2017; 7(18):4410-4423. PubMed ID: 29158836 [TBL] [Abstract][Full Text] [Related]
29. NIR photothermal therapy using polyaniline nanoparticles. Zhou J; Lu Z; Zhu X; Wang X; Liao Y; Ma Z; Li F Biomaterials; 2013 Dec; 34(37):9584-92. PubMed ID: 24044996 [TBL] [Abstract][Full Text] [Related]
30. Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells. Zhang Y; Li B; Cao Y; Qin J; Peng Z; Xiao Z; Huang X; Zou R; Hu J Dalton Trans; 2015 Feb; 44(6):2771-9. PubMed ID: 25468402 [TBL] [Abstract][Full Text] [Related]
31. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. Sharker SM; Kim SM; Lee JE; Choi KH; Shin G; Lee S; Lee KD; Jeong JH; Lee H; Park SY J Control Release; 2015 Nov; 217():211-20. PubMed ID: 26381897 [TBL] [Abstract][Full Text] [Related]
32. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Xiao JW; Fan SX; Wang F; Sun LD; Zheng XY; Yan CH Nanoscale; 2014 Apr; 6(8):4345-51. PubMed ID: 24622916 [TBL] [Abstract][Full Text] [Related]
33. Near-Infrared-Triggered in Situ Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose. Meng Z; Chao Y; Zhou X; Liang C; Liu J; Zhang R; Cheng L; Yang K; Pan W; Zhu M; Liu Z ACS Nano; 2018 Sep; 12(9):9412-9422. PubMed ID: 30148960 [TBL] [Abstract][Full Text] [Related]
34. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Liu X; Li B; Fu F; Xu K; Zou R; Wang Q; Zhang B; Chen Z; Hu J Dalton Trans; 2014 Aug; 43(30):11709-15. PubMed ID: 24950757 [TBL] [Abstract][Full Text] [Related]
35. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. Zhao P; Zheng M; Yue C; Luo Z; Gong P; Gao G; Sheng Z; Zheng C; Cai L Biomaterials; 2014 Jul; 35(23):6037-46. PubMed ID: 24776486 [TBL] [Abstract][Full Text] [Related]
36. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Boca SC; Potara M; Gabudean AM; Juhem A; Baldeck PL; Astilean S Cancer Lett; 2011 Dec; 311(2):131-40. PubMed ID: 21840122 [TBL] [Abstract][Full Text] [Related]
37. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821 [TBL] [Abstract][Full Text] [Related]
38. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. Fazal S; Jayasree A; Sasidharan S; Koyakutty M; Nair SV; Menon D ACS Appl Mater Interfaces; 2014 Jun; 6(11):8080-9. PubMed ID: 24842534 [TBL] [Abstract][Full Text] [Related]
39. A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. Lin H; Gao S; Dai C; Chen Y; Shi J J Am Chem Soc; 2017 Nov; 139(45):16235-16247. PubMed ID: 29063760 [TBL] [Abstract][Full Text] [Related]
40. Dynamically tuning near-infrared-induced photothermal performances of TiO Yu N; Hu Y; Wang X; Liu G; Wang Z; Liu Z; Tian Q; Zhu M; Shi X; Chen Z Nanoscale; 2017 Jul; 9(26):9148-9159. PubMed ID: 28650058 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]