These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25818759)

  • 1. Life in the unthinking depths: energetic constraints on encephalization in marine fishes.
    Iglesias TL; Dornburg A; Brandley MC; Alfaro ME; Warren DL
    J Evol Biol; 2015 May; 28(5):1080-90. PubMed ID: 25818759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The costs of a big brain: extreme encephalization results in higher energetic demand and reduced hypoxia tolerance in weakly electric African fishes.
    Sukhum KV; Freiler MK; Wang R; Carlson BA
    Proc Biol Sci; 2016 Dec; 283(1845):. PubMed ID: 28003448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraspecific Energetic Trade-Offs and Costs of Encephalization Vary from Interspecific Relationships in Three Species of Mormyrid Electric Fishes.
    Sukhum KV; Freiler MK; Carlson BA
    Brain Behav Evol; 2019; 93(4):196-205. PubMed ID: 31352440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encephalization in tropical teleost fishes and comparison with their mode of life.
    Bauchot R; Randall JE; Ridet JM; Bauchot ML
    J Hirnforsch; 1989; 30(6):645-69. PubMed ID: 2628485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative support for the expensive tissue hypothesis: Big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids.
    Tsuboi M; Husby A; Kotrschal A; Hayward A; Buechel SD; Zidar J; Løvlie H; Kolm N
    Evolution; 2015 Jan; 69(1):190-200. PubMed ID: 25346264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Costs of encephalization: the energy trade-off hypothesis tested on birds.
    Isler K; van Schaik C
    J Hum Evol; 2006 Sep; 51(3):228-43. PubMed ID: 16730368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Quantitative analysis of the teleost brain: evolution and adaptation. 1. A comparative interspecies study].
    Ridet JM; Bauchot R
    J Hirnforsch; 1990; 31(1):51-63. PubMed ID: 2358654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large Brains, Small Guts: The Expensive Tissue Hypothesis Supported within Anurans.
    Liao WB; Lou SL; Zeng Y; Kotrschal A
    Am Nat; 2016 Dec; 188(6):693-700. PubMed ID: 27860511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encephalization, expensive tissues, and energetics: An examination of the relative costs of brain size in strepsirrhines.
    Barrickman NL; Lin MJ
    Am J Phys Anthropol; 2010 Dec; 143(4):579-90. PubMed ID: 20623679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic trade-offs between brain size and offspring production: Marsupials confirm a general mammalian pattern.
    Isler K
    Bioessays; 2011 Mar; 33(3):173-9. PubMed ID: 21254150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the roles of energetic functional constraints on teleost mitochondrial-encoded protein evolution.
    Sun YB; Shen YY; Irwin DM; Zhang YP
    Mol Biol Evol; 2011 Jan; 28(1):39-44. PubMed ID: 20924083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the physiology of chondrichthyan fishes constrain their distribution in the deep sea?
    Treberg JR; Speers-Roesch B
    J Exp Biol; 2016 Mar; 219(Pt 5):615-25. PubMed ID: 26936637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does encephalization correlate with life history or metabolic rate in Carnivora?
    Finarelli JA
    Biol Lett; 2010 Jun; 6(3):350-3. PubMed ID: 20007169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature.
    Killen SS; Atkinson D; Glazier DS
    Ecol Lett; 2010 Feb; 13(2):184-93. PubMed ID: 20059525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exceptionally Steep Brain-Body Evolutionary Allometry Underlies the Unique Encephalization of Osteoglossiformes.
    Tsuboi M
    Brain Behav Evol; 2021; 96(2):49-63. PubMed ID: 34634787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraspecific metabolic scaling exponent depends on red blood cell size in fishes.
    Luo Y; He D; Li G; Xie H; Zhang Y; Huang Q
    J Exp Biol; 2015 May; 218(Pt 10):1496-503. PubMed ID: 25795736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Encephalization of the marine lamprey, Petromyzon marinus (L.). Quantitative analysis of the principle brain subdivisions].
    Platel R; Delfini C
    J Hirnforsch; 1986; 27(3):279-93. PubMed ID: 3760543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breakdown of brain-body allometry and the encephalization of birds and mammals.
    Tsuboi M; van der Bijl W; Kopperud BT; Erritzøe J; Voje KL; Kotrschal A; Yopak KE; Collin SP; Iwaniuk AN; Kolm N
    Nat Ecol Evol; 2018 Sep; 2(9):1492-1500. PubMed ID: 30104752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain size, gut size and cognitive abilities: the energy trade-offs tested in artificial selection experiment.
    Goncerzewicz A; Górkiewicz T; Dzik JM; Jędrzejewska-Szmek J; Knapska E; Konarzewski M
    Proc Biol Sci; 2022 Apr; 289(1972):20212747. PubMed ID: 35414242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life history costs and benefits of encephalization: a comparative test using data from long-term studies of primates in the wild.
    Barrickman NL; Bastian ML; Isler K; van Schaik CP
    J Hum Evol; 2008 May; 54(5):568-90. PubMed ID: 18068214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.