BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25819004)

  • 1. Structure-function relationships affecting the sensing mechanism of monolayer-protected cluster doped xerogel amperometric glucose biosensors.
    DiPasquale LT; Poulos NG; Hall JR; Minocha A; Bui TA; Leopold MC
    J Colloid Interface Sci; 2015 Jul; 450():202-212. PubMed ID: 25819004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolayer-protected nanoparticle doped xerogels as functional components of amperometric glucose biosensors.
    Freeman MH; Hall JR; Leopold MC
    Anal Chem; 2013 Apr; 85(8):4057-65. PubMed ID: 23472762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional layer-by-layer design of xerogel-based first-generation amperometric glucose biosensors.
    Poulos NG; Hall JR; Leopold MC
    Langmuir; 2015 Feb; 31(4):1547-55. PubMed ID: 25562760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle film assemblies as platforms for electrochemical biosensing--factors affecting the amperometric signal enhancement of hydrogen peroxide.
    Schmidt AR; Nguyen ND; Leopold MC
    Langmuir; 2013 Apr; 29(14):4574-83. PubMed ID: 23473024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode.
    Wu BY; Hou SH; Yin F; Li J; Zhao ZX; Huang JD; Chen Q
    Biosens Bioelectron; 2007 Jan; 22(6):838-44. PubMed ID: 16675215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amperometric biosensors based on carbon paste electrodes modified with nanostructured mixed-valence manganese oxides and glucose oxidase.
    Cui X; Liu G; Lin Y
    Nanomedicine; 2005 Jun; 1(2):130-5. PubMed ID: 17292069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance dependence of electron transfer kinetics for azurin protein adsorbed to monolayer protected nanoparticle film assemblies.
    Vargo ML; Gulka CP; Gerig JK; Manieri CM; Dattelbaum JD; Marks CB; Lawrence NT; Trawick ML; Leopold MC
    Langmuir; 2010 Jan; 26(1):560-9. PubMed ID: 19678633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction.
    Zhang D; Zhang K; Yao YL; Xia XH; Chen HY
    Langmuir; 2004 Aug; 20(17):7303-7. PubMed ID: 15301519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedimetric and amperometric bifunctional glucose biosensor based on hybrid organic-inorganic thin films.
    Wang H; Ohnuki H; Endo H; Izumi M
    Bioelectrochemistry; 2015 Feb; 101():1-7. PubMed ID: 25014167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites.
    Xiang D; Yin L; Ma J; Guo E; Li Q; Li Z; Liu K
    Analyst; 2015 Jan; 140(2):644-53. PubMed ID: 25429370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amperometric glucose biosensor based on layer-by-layer films of microperoxidase-11 and liposome-encapsulated glucose oxidase.
    Graça JS; de Oliveira RF; de Moraes ML; Ferreira M
    Bioelectrochemistry; 2014 Apr; 96():37-42. PubMed ID: 24491835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amperometric glucose biosensor based on gold-deposited polyvinylferrocene film on Pt electrode.
    Topçu Sulak M; Gökdoğan O; Gülce A; Gülce H
    Biosens Bioelectron; 2006 Mar; 21(9):1719-26. PubMed ID: 16198102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Elucidation of Nanomaterial-Enhanced First-Generation Biosensors Using Probe Voltammetry of an Enzymatic Reaction.
    Wemple AH; Kaplan JS; Leopold MC
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode.
    Wu BY; Hou SH; Yin F; Zhao ZX; Wang YY; Wang XS; Chen Q
    Biosens Bioelectron; 2007 Jun; 22(12):2854-60. PubMed ID: 17212983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly-ordered perpendicularly immobilized FWCNTs on the thionine monolayer-modified electrode for hydrogen peroxide and glucose sensors.
    Ma M; Miao Z; Zhang D; Du X; Zhang Y; Zhang C; Lin J; Chen Q
    Biosens Bioelectron; 2015 Feb; 64():477-84. PubMed ID: 25286355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, assembly, and characterization of monolayer protected gold nanoparticle films for protein monolayer electrochemistry.
    Doan TT; Freeman MH; Schmidt AR; Nguyen ND; Leopold MC
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 21989124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterial-Doped Xerogels for Biosensing Measurements of Xanthine in Clinical and Industrial Applications.
    Dang QM; Wemple AH; Leopold MC
    Gels; 2023 May; 9(6):. PubMed ID: 37367108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2.
    Chakraborty S; Raj CR
    Biosens Bioelectron; 2009 Jul; 24(11):3264-8. PubMed ID: 19442506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design.
    Zayats M; Baron R; Popov I; Willner I
    Nano Lett; 2005 Jan; 5(1):21-5. PubMed ID: 15792406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.