These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 25819085)

  • 1. Genetic study of complex diseases in the post-GWAS era.
    Huang Q
    J Genet Genomics; 2015 Mar; 42(3):87-98. PubMed ID: 25819085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies.
    Li B; Dong J; Yu J; Fan Y; Shang L; Zhou X; Bai Y
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):191. PubMed ID: 33371893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human aging in the post-GWAS era: further insights reveal potential regulatory variants.
    Haider SA; Faisal M
    Biogerontology; 2015 Aug; 16(4):529-41. PubMed ID: 25895066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of single nucleotide polymorphisms (SNPs)].
    Wakui M
    Rinsho Byori; 2013 Nov; 61(11):1008-17. PubMed ID: 24450106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis.
    Duan S; Luo X; Dong C
    Gene; 2013 Dec; 531(2):347-54. PubMed ID: 23994195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in the Untranslated Genome and Susceptibility to Infections.
    Ramsuran V; Ewy R; Nguyen H; Kulkarni S
    Front Immunol; 2018; 9():2046. PubMed ID: 30245696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From genome-wide association studies to functional genomics: new insights into cardiovascular disease.
    McPherson R
    Can J Cardiol; 2013 Jan; 29(1):23-9. PubMed ID: 23200092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pursuit of genome-wide association studies: where are we now?
    Ku CS; Loy EY; Pawitan Y; Chia KS
    J Hum Genet; 2010 Apr; 55(4):195-206. PubMed ID: 20300123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined analysis of exon splicing and genome wide polymorphism data predict schizophrenia risk loci.
    Oldmeadow C; Mossman D; Evans TJ; Holliday EG; Tooney PA; Cairns MJ; Wu J; Carr V; Attia JR; Scott RJ
    J Psychiatr Res; 2014 May; 52():44-9. PubMed ID: 24507884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SNPs in Sites for DNA Methylation, Transcription Factor Binding, and miRNA Targets Leading to Allele-Specific Gene Expression and Contributing to Complex Disease Risk: A Systematic Review.
    Vohra M; Sharma AR; Prabhu B N; Rai PS
    Public Health Genomics; 2020; 23(5-6):155-170. PubMed ID: 32966991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress on functional mechanisms of colorectal cancer causal SNPs in post-GWAS.
    Yige L; Dandan Z
    Yi Chuan; 2021 Mar; 43(3):203-214. PubMed ID: 33724205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Where in the genome are significant single nucleotide polymorphisms from genome-wide association studies located?
    Günther T; Schmitt AO; Bortfeldt RH; Hinney A; Hebebrand J; Brockmann GA
    OMICS; 2011; 15(7-8):507-12. PubMed ID: 21699402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants.
    Spisák S; Lawrenson K; Fu Y; Csabai I; Cottman RT; Seo JH; Haiman C; Han Y; Lenci R; Li Q; Tisza V; Szállási Z; Herbert ZT; Chabot M; Pomerantz M; Solymosi N; ; Gayther SA; Joung JK; Freedman ML
    Nat Med; 2015 Nov; 21(11):1357-63. PubMed ID: 26398868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Characterization of Osteoporosis Associated SNPs and Genes Identified by Genome-Wide Association Studies.
    Qin L; Liu Y; Wang Y; Wu G; Chen J; Ye W; Yang J; Huang Q
    PLoS One; 2016; 11(3):e0150070. PubMed ID: 26930606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational and functional analyses of T2D GWAS SNPs for transcription factor binding.
    Cheng M; Huang X; Zhang M; Huang Q
    Biochem Biophys Res Commun; 2020 Mar; 523(3):658-665. PubMed ID: 31948755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic susceptibility to SLE: recent progress from GWAS.
    Cui Y; Sheng Y; Zhang X
    J Autoimmun; 2013 Mar; 41():25-33. PubMed ID: 23395425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allele-specific transcription factor binding in liver and cervix cells unveils many likely drivers of GWAS signals.
    Cavalli M; Pan G; Nord H; Wallén Arzt E; Wallerman O; Wadelius C
    Genomics; 2016 Jun; 107(6):248-54. PubMed ID: 27126307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies.
    Xu Z; Taylor JA
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W600-5. PubMed ID: 19417063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of HapMap SNPs.
    Liu CT; Lin H; Lin H
    Gene; 2012 Dec; 511(2):358-63. PubMed ID: 23041558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional genomics of candidate genes derived from genome-wide association studies for five common neurological diseases.
    Guio-Vega GP; Forero DA
    Int J Neurosci; 2017 Feb; 127(2):118-123. PubMed ID: 26829381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.