These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 25819085)

  • 21. Allele-Skewed DNA Modification in the Brain: Relevance to a Schizophrenia GWAS.
    Gagliano SA; Ptak C; Mak DYF; Shamsi M; Oh G; Knight J; Boutros PC; Petronis A
    Am J Hum Genet; 2016 May; 98(5):956-962. PubMed ID: 27087318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On beyond GWAS.
    Nat Genet; 2010 Jul; 42(7):551. PubMed ID: 20581872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploration of deleterious single nucleotide polymorphisms in the components of human P bodies: an in silico approach.
    Venkatesh T; Suresh PS
    Gene; 2013 Oct; 528(2):360-3. PubMed ID: 23892092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide-associated variants in migraine susceptibility: a replication study from North India.
    Ghosh J; Pradhan S; Mittal B
    Headache; 2013; 53(10):1583-94. PubMed ID: 24266335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of causal sequence variants of disease in the next generation sequencing era.
    Kingsley CB
    Methods Mol Biol; 2011; 700():37-46. PubMed ID: 21204025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Examination of the current top candidate genes for AD in a genome-wide association study.
    Feulner TM; Laws SM; Friedrich P; Wagenpfeil S; Wurst SH; Riehle C; Kuhn KA; Krawczak M; Schreiber S; Nikolaus S; Förstl H; Kurz A; Riemenschneider M
    Mol Psychiatry; 2010 Jul; 15(7):756-66. PubMed ID: 19125160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide pathogenesis interpretation using a heat diffusion-based systems genetics method and implications for gene function annotation.
    Quan Y; Zhang QY; Lv BM; Xu RF; Zhang HY
    Mol Genet Genomic Med; 2020 Oct; 8(10):e1456. PubMed ID: 32869547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using genome-wide pathway analysis to unravel the etiology of complex diseases.
    Elbers CC; van Eijk KR; Franke L; Mulder F; van der Schouw YT; Wijmenga C; Onland-Moret NC
    Genet Epidemiol; 2009 Jul; 33(5):419-31. PubMed ID: 19235186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetics research in systemic lupus erythematosus for clinicians: methodology, progress, and controversies.
    Kaiser R; Criswell LA
    Curr Opin Rheumatol; 2010 Mar; 22(2):119-25. PubMed ID: 20035223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulatory SNPs in complex diseases: their identification and functional validation.
    Prokunina L; Alarcón-Riquelme ME
    Expert Rev Mol Med; 2004 Apr; 6(10):1-15. PubMed ID: 15122975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lessons from genome-wide association studies findings in Alzheimer's disease.
    Moraes CF; Lins TC; Carmargos EF; Naves JO; Pereira RW; Nóbrega OT
    Psychogeriatrics; 2012 Mar; 12(1):62-73. PubMed ID: 22416831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional analysis of low-grade glioma genetic variants predicts key target genes and transcription factors.
    Manjunath M; Yan J; Youn Y; Drucker KL; Kollmeyer TM; McKinney AM; Zazubovich V; Zhang Y; Costello JF; Eckel-Passow J; Selvin PR; Jenkins RB; Song JS
    Neuro Oncol; 2021 Apr; 23(4):638-649. PubMed ID: 33130899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathway Analysis of Genes Identified through Post-GWAS to Underpin Prostate Cancer Aetiology.
    Farashi S; Kryza T; Batra J
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32397189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poor replication of candidate genes for major depressive disorder using genome-wide association data.
    Bosker FJ; Hartman CA; Nolte IM; Prins BP; Terpstra P; Posthuma D; van Veen T; Willemsen G; DeRijk RH; de Geus EJ; Hoogendijk WJ; Sullivan PF; Penninx BW; Boomsma DI; Snieder H; Nolen WA
    Mol Psychiatry; 2011 May; 16(5):516-32. PubMed ID: 20351714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. METU-SNP: an integrated software system for SNP-complex disease association analysis.
    Ustünkar G; Aydın Son Y
    J Integr Bioinform; 2011 Dec; 8(1):187. PubMed ID: 22156365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multigenic modeling of complex disease by random forests.
    Sun YV
    Adv Genet; 2010; 72():73-99. PubMed ID: 21029849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Convergent downstream candidate mechanisms of independent intergenic polymorphisms between co-classified diseases implicate epistasis among noncoding elements.
    Han J; Li J; Achour I; Pesce L; Foster I; Li H; Lussier YA
    Pac Symp Biocomput; 2018; 23():524-535. PubMed ID: 29218911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beyond GWASs: illuminating the dark road from association to function.
    Edwards SL; Beesley J; French JD; Dunning AM
    Am J Hum Genet; 2013 Nov; 93(5):779-97. PubMed ID: 24210251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA expression in human retina.
    Li M; Zauhar RJ; Grazal C; Curcio CA; DeAngelis MM; Stambolian D
    Hum Mol Genet; 2017 Aug; 26(R1):R68-R74. PubMed ID: 28854577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.