These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 25819315)

  • 21. [Experimental research on the process of decomposition of a CO2-CO-H2O-H2-N2 gas mixture in an electrolytic cell with a solid electrolyte].
    Grishaenkov BG; Zorina NG
    Kosm Biol Aviakosm Med; 1986; 20(5):78-81. PubMed ID: 3097386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach.
    Raghu S; Lee CW; Chellammal S; Palanichamy S; Basha CA
    J Hazard Mater; 2009 Nov; 171(1-3):748-54. PubMed ID: 19592159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Electrochemically active microorganisms and electrolytically assisted fermentative hydrogen production--a review].
    Li J; Zhang W; Yin F; Xu R; Chen Y
    Wei Sheng Wu Xue Bao; 2009 Jun; 49(6):697-702. PubMed ID: 19673403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrolytic treatment of wastewater containing n-phenyl-n'-1,3-dimethylbutyl-p-phenylenediamine.
    Inazaki TH; Moraes PB; Pião AC; Bidoia ED
    Environ Technol; 2008 May; 29(5):553-8. PubMed ID: 18661739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphate removal and recovery by a novel electrolytic process.
    Sakakibara Y; Nakajima H
    Water Sci Technol; 2002; 46(11-12):147-52. PubMed ID: 12523746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrolytic recovery of chromium salts from tannery wastewater.
    Sirajuddin ; Kakakhel L; Lutfullah G; Bhanger MI; Shah A; Niaz A
    J Hazard Mater; 2007 Sep; 148(3):560-5. PubMed ID: 17451875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soluble phosphorus removal through adsorption on spent alum sludge.
    Georgantas DA; Matsis VM; Grigoropoulou HP
    Environ Technol; 2006 Oct; 27(10):1081-8. PubMed ID: 17144257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic effect in treatment of C.I. Acid Red 2 by electrocoagulation and electrooxidation.
    Zhang XD; Hao JD; Li WS; Jin HJ; Yang J; Huang QM; Lu DS; Xu HK
    J Hazard Mater; 2009 Oct; 170(2-3):883-7. PubMed ID: 19501959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laboratory studies on nitrogen and phosphorus removal from swine wastewater by iron electrolysis.
    Ikematsu M; Kaneda K; Takaoka D; Yasuda M
    Environ Technol; 2007 May; 28(5):521-8. PubMed ID: 17615961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrate removal by a paired electrolysis on copper and Ti/IrO(2) coupled electrodes - influence of the anode/cathode surface area ratio.
    Reyter D; Bélanger D; Roué L
    Water Res; 2010 Mar; 44(6):1918-26. PubMed ID: 20031186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrolytic removal of ammonia from aqueous phase by Pt/Ti anode.
    Li L; Huang Y; Liu Y; Li Y
    Water Sci Technol; 2013; 67(11):2451-7. PubMed ID: 23752376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Luminescent properties of MAl(SO4)2 Br:Eu(3+) (M = Sr or Mg) red phosphors for near-UV light-emitting diodes.
    Deshmukh PB; Puppalwar SP; Dhoble NS; Dhoble SJ
    Luminescence; 2015 Feb; 30(1):118-21. PubMed ID: 24828319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anaerobic ammonium oxidation with an anode as the electron acceptor.
    Qu B; Fan B; Zhu S; Zheng Y
    Environ Microbiol Rep; 2014 Feb; 6(1):100-5. PubMed ID: 24596267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-conditioning and dewatering of alum sludge and waste activated sludge.
    Lai JY; Liu JC
    Water Sci Technol; 2004; 50(9):41-8. PubMed ID: 15580993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials.
    Ma Y; Cui Y; Zuo X; Huang S; Hu K; Xiao X; Nan J
    Waste Manag; 2014 Oct; 34(10):1793-9. PubMed ID: 24906867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water electrolysis: an excellent approach for the removal of water from ionic liquids.
    Islam MM; Okajima T; Kojima S; Ohsaka T
    Chem Commun (Camb); 2008 Nov; (42):5330-2. PubMed ID: 18985200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical effect on denitrification in different microenvironments around anodes and cathodes.
    Zhang LH; Jia JP; Ying DW; Zhu NW; Zhu YC
    Res Microbiol; 2005; 156(1):88-92. PubMed ID: 15636752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The application of electrochemical technology to the remediation of oily wastewater.
    Santos MR; Goulart MO; Tonholo J; Zanta CL
    Chemosphere; 2006 Jun; 64(3):393-9. PubMed ID: 16473394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater.
    Yi F; Chen S; Yuan C
    J Hazard Mater; 2008 Aug; 157(1):79-87. PubMed ID: 18258359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of alum coagulation on the character, biodegradability and disinfection by-product formation potential of reservoir natural organic matter (NOM) fractions.
    Soh YC; Roddick F; van Leeuwen J
    Water Sci Technol; 2008; 58(6):1173-9. PubMed ID: 18845853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.