These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 2581951)
1. Adenine nucleotide and phosphate transport systems of mitochondria. Relative location of sulfhydryl groups based on the use of the novel fluorescent probe eosin-5-maleimide. Houstĕk J; Pedersen PL J Biol Chem; 1985 May; 260(10):6288-95. PubMed ID: 2581951 [TBL] [Abstract][Full Text] [Related]
2. Characterization of cysteine residues of mitochondrial ADP/ATP carrier with the SH-reagents eosin 5-maleimide and N-ethylmaleimide. Majima E; Koike H; Hong YM; Shinohara Y; Terada H J Biol Chem; 1993 Oct; 268(29):22181-7. PubMed ID: 7691823 [TBL] [Abstract][Full Text] [Related]
3. Importance of loops of mitochondrial ADP/ATP carrier for its transport activity deduced from reactivities of its cysteine residues with the sulfhydryl reagent eosin-5-maleimide. Majima E; Shinohara Y; Yamaguchi N; Hong YM; Terada H Biochemistry; 1994 Aug; 33(32):9530-6. PubMed ID: 7520750 [TBL] [Abstract][Full Text] [Related]
4. Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. McStay GP; Clarke SJ; Halestrap AP Biochem J; 2002 Oct; 367(Pt 2):541-8. PubMed ID: 12149099 [TBL] [Abstract][Full Text] [Related]
5. Rotational diffusion of the ADP/ATP translocator in the inner membrane of mitochondria and in proteoliposomes. Müller M; Krebs JJ; Cherry RJ; Kawato S J Biol Chem; 1984 Mar; 259(5):3037-43. PubMed ID: 6199354 [TBL] [Abstract][Full Text] [Related]
6. Inhibition and labelling of the mitochondrial 2-oxoglutarate carrier by eosin-5-maleimide. Zara V; Palmieri F FEBS Lett; 1988 Aug; 236(2):493-6. PubMed ID: 2457517 [TBL] [Abstract][Full Text] [Related]
7. Binding of the fluorescein derivative eosin Y to the mitochondrial ADP/ATP carrier: characterization of the adenine nucleotide binding site. Majima E; Yamaguchi N; Chuman H; Shinohara Y; Ishida M; Goto S; Terada H Biochemistry; 1998 Jan; 37(1):424-32. PubMed ID: 9425064 [TBL] [Abstract][Full Text] [Related]
8. Selective labeling and rotational diffusion of the ADP/ATP translocator in the inner mitochondrial membrane. Müller M; Krebs JJ; Cherry RJ; Kawato S J Biol Chem; 1982 Feb; 257(3):1117-20. PubMed ID: 6173378 [TBL] [Abstract][Full Text] [Related]
9. The effect of N-ethylmaleimide on permeability transition as induced by carboxyatractyloside, agaric acid, and oleate. García N; Pavón N; Chávez E Cell Biochem Biophys; 2008; 51(2-3):81-7. PubMed ID: 18649145 [TBL] [Abstract][Full Text] [Related]
10. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. Halestrap AP; Woodfield KY; Connern CP J Biol Chem; 1997 Feb; 272(6):3346-54. PubMed ID: 9013575 [TBL] [Abstract][Full Text] [Related]
11. Interaction of (3H) bongkrekic acid with the mitochondrial adenine nucleotide translocator. Lauquin GJ; Vignais PV Biochemistry; 1976 Jun; 15(11):2316-22. PubMed ID: 1276138 [TBL] [Abstract][Full Text] [Related]
12. Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Its dependence on membrane fluidity. García N; Zazueta C; Pavón N; Chávez E Mitochondrion; 2005 Aug; 5(4):272-81. PubMed ID: 16050990 [TBL] [Abstract][Full Text] [Related]
13. Characterization of SH groups in porin of bovine heart mitochondria. Porin cysteines are localized in the channel walls. De Pinto V; al Jamal JA; Benz R; Genchi G; Palmieri F Eur J Biochem; 1991 Dec; 202(3):903-11. PubMed ID: 1722458 [TBL] [Abstract][Full Text] [Related]
14. Two-dimensional diffusion of F1F0-ATP synthase and ADP/ATP translocator. Testing a hypothesis for ATP synthesis in the mitochondrial inner membrane. Gupte SS; Chazotte B; Leesnitzer MA; Hackenbrock CR Biochim Biophys Acta; 1991 Nov; 1069(2):131-8. PubMed ID: 1718429 [TBL] [Abstract][Full Text] [Related]
15. Transport of ADP/ATP carrier into mitochondria. Precursor imported in vitro acquires functional properties of the mature protein. Schleyer M; Neupert W J Biol Chem; 1984 Mar; 259(6):3487-91. PubMed ID: 6323427 [TBL] [Abstract][Full Text] [Related]
16. Functionally important conserved length of C-terminal regions of yeast and bovine ADP/ATP carriers, identified by deletion mutants studies, and water accessibility of the amino acids at the C-terminal region of the yeast carrier. Iwahashi A; Ishii A; Yamazaki N; Hashimoto M; Ohkura K; Kataoka M; Majima E; Terada H; Shinohara Y Mitochondrion; 2008 Mar; 8(2):196-204. PubMed ID: 18313366 [TBL] [Abstract][Full Text] [Related]
17. Interaction of fluorescent adenine nucleotide derivatives with the ADP/ATP carrier in mitochondria. 2. [5-(Dimethylamino)-1-naphthoyl]adenine nucleotides as probes for the transition between c and m states of the ADP/ATP carrier. Klingenberg M; Mayer I; Dahms AS Biochemistry; 1984 May; 23(11):2442-9. PubMed ID: 6089872 [TBL] [Abstract][Full Text] [Related]
18. Probing of sulfhydryl groups in the adenosine 5'-diphosphate/adenosine 5'-triphosphate carrier by maleimide spin-labels. Munding A; Drees M; Beyer K; Klingenberg M Biochemistry; 1987 Dec; 26(26):8637-44. PubMed ID: 2831946 [TBL] [Abstract][Full Text] [Related]
19. Twisting of the second transmembrane alpha-helix of the mitochondrial ADP/ATP carrier during the transition between two carrier conformational states. Kihira Y; Iwahashi A; Majima E; Terada H; Shinohara Y Biochemistry; 2004 Dec; 43(48):15204-9. PubMed ID: 15568812 [TBL] [Abstract][Full Text] [Related]
20. Substrate-site interactions in the membrane-bound adenine-nucleotide carrier as disclosed by ADP and ATP analogs. Block MR; Vignais PV Biochim Biophys Acta; 1984 Nov; 767(2):369-76. PubMed ID: 6093873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]