These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25820317)

  • 1. Synthesis of 1-C-Glycoside-Linked Lipid II Analogues Toward Bacterial Transglycosylase Inhibition.
    Lin CK; Chen KT; Hu CM; Yun WY; Cheng WC
    Chemistry; 2015 May; 21(20):7511-9. PubMed ID: 25820317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the lipid II sugar moiety on bacterial transglycosylase: the 4-hydroxy epimer of lipid II is a TGase inhibitor.
    Chen KT; Lin CK; Guo CW; Chang YF; Hu CM; Lin HH; Lai Y; Cheng TR; Cheng WC
    Chem Commun (Camb); 2017 Jan; 53(4):771-774. PubMed ID: 27999831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total synthesis of polyprenyl N-glycolyl lipid II as a mycobacterial transglycosylase substrate.
    Meng FC; Chen KT; Huang LY; Shih HW; Chang HH; Nien FY; Liang PH; Cheng TJ; Wong CH; Cheng WC
    Org Lett; 2011 Oct; 13(19):5306-9. PubMed ID: 21913698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iminosugar C-glycoside analogues of α-D-GlcNAc-1-phosphate: synthesis and bacterial transglycosylase inhibition.
    Hsu CH; Schelwies M; Enck S; Huang LY; Huang SH; Chang YF; Cheng TJ; Cheng WC; Wong CH
    J Org Chem; 2014 Sep; 79(18):8629-37. PubMed ID: 25137529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new synthetic approach toward bacterial transglycosylase substrates, Lipid II and Lipid IV.
    Shih HW; Chen KT; Cheng TJ; Wong CH; Cheng WC
    Org Lett; 2011 Sep; 13(17):4600-3. PubMed ID: 21797279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and evaluation of a new fluorescent transglycosylase substrate: lipid II-based molecule possessing a dansyl-C20 polyprenyl moiety.
    Liu CY; Guo CW; Chang YF; Wang JT; Shih HW; Hsu YF; Chen CW; Chen SK; Wang YC; Cheng TJ; Ma C; Wong CH; Fang JM; Cheng WC
    Org Lett; 2010 Apr; 12(7):1608-11. PubMed ID: 20187630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of lipid-linked arabinofuranose donors for glycosyltransferases.
    Kraft MB; Martinez Farias MA; Kiessling LL
    J Org Chem; 2013 Mar; 78(5):2128-33. PubMed ID: 23373821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic synthesis of lipid II and analogues.
    Huang LY; Huang SH; Chang YC; Cheng WC; Cheng TJ; Wong CH
    Angew Chem Int Ed Engl; 2014 Jul; 53(31):8060-5. PubMed ID: 24990652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and biological evaluation of iminosugar-based glycosyltransferase inhibitors.
    Compain P; Martin OR
    Curr Top Med Chem; 2003; 3(5):541-60. PubMed ID: 12570865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient and stereoselective synthesis of beta-glycolipids.
    Morales-Serna JA; Boutureira O; Díaz Y; Matheu MI; Castillón S
    Org Biomol Chem; 2008 Feb; 6(3):443-6. PubMed ID: 18219410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial approach toward synthesis of small molecule libraries as bacterial transglycosylase inhibitors.
    Shih HW; Chen KT; Chen SK; Huang CY; Cheng TJ; Ma C; Wong CH; Cheng WC
    Org Biomol Chem; 2010 Jun; 8(11):2586-93. PubMed ID: 20485795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based design of bacterial transglycosylase inhibitors incorporating biphenyl, amine linker and 2-alkoxy-3-phosphorylpropanoate moieties.
    Yu JY; Cheng HJ; Wu HR; Wu WS; Lu JW; Cheng TJ; Wu YT; Fang JM
    Eur J Med Chem; 2018 Apr; 150():729-741. PubMed ID: 29574202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acceptor specificity and inhibition of the bacterial cell-wall glycosyltransferase MurG.
    Liu H; Ritter TK; Sadamoto R; Sears PS; Wu M; Wong CH
    Chembiochem; 2003 Jul; 4(7):603-9. PubMed ID: 12851929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-glycosidic analogues of lipid A and lipid X: synthesis and biological activities.
    Vyplel H; Scholz D; Macher I; Schindlmaier K; Schütze E
    J Med Chem; 1991 Sep; 34(9):2759-67. PubMed ID: 1895296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex carbohydrate synthesis tools for glycobiologists: enzyme-based approach and programmable one-pot strategies.
    Koeller KM; Wong CH
    Glycobiology; 2000 Nov; 10(11):1157-69. PubMed ID: 11087708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and biological evaluation of analogues of bacterial lipid I.
    Silva DJ; Bowe CL; Branstrom AA; Baizman ER; Sofia MJ
    Bioorg Med Chem Lett; 2000 Dec; 10(24):2811-3. PubMed ID: 11133098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of O- and C-glycosides derived from β-(1,3)-D-glucans.
    Marca E; Valero-Gonzalez J; Delso I; Tejero T; Hurtado-Guerrero R; Merino P
    Carbohydr Res; 2013 Dec; 382():9-18. PubMed ID: 24140893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of mono- and disaccharide analogs of moenomycin and lipid II for inhibition of transglycosylase activity of penicillin-binding protein 1b.
    Garneau S; Qiao L; Chen L; Walker S; Vederas JC
    Bioorg Med Chem; 2004 Dec; 12(24):6473-94. PubMed ID: 15556765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and biological evaluation of heteroanalogues of kotalanol and de-O-sulfonated kotalanol.
    Mohan S; Jayakanthan K; Nasi R; Kuntz DA; Rose DR; Pinto BM
    Org Lett; 2010 Mar; 12(5):1088-91. PubMed ID: 20143790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, inhibition properties, and theoretical study of the new nanomolar trehalase inhibitor 1-thiatrehazolin: towards a structural understanding of trehazolin inhibition.
    Chiara JL; Storch de Gracia I; García A; Bastida A; Bobo S; Martín-Ortega MD
    Chembiochem; 2005 Jan; 6(1):186-91. PubMed ID: 15532066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.