BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25820394)

  • 21. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise.
    Ishibashi Y; Duncker DJ; Zhang J; Bache RJ
    Circ Res; 1998 Feb; 82(3):346-59. PubMed ID: 9486663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats.
    Ferguson SK; Hirai DM; Copp SW; Holdsworth CT; Allen JD; Jones AM; Musch TI; Poole DC
    J Physiol; 2013 Jan; 591(2):547-57. PubMed ID: 23070702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of NO synthase inhibition on the muscular blood flow response to treadmill exercise in rats.
    Hirai T; Visneski MD; Kearns KJ; Zelis R; Musch TI
    J Appl Physiol (1985); 1994 Sep; 77(3):1288-93. PubMed ID: 7530705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of type II diabetes on exercising skeletal muscle blood flow in the rat.
    Copp SW; Hageman KS; Behnke BJ; Poole DC; Musch TI
    J Appl Physiol (1985); 2010 Nov; 109(5):1347-53. PubMed ID: 20798267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vascular K
    Holdsworth CT; Ferguson SK; Colburn TD; Fees AJ; Craig JC; Hirai DM; Poole DC; Musch TI
    Respir Physiol Neurobiol; 2017 Apr; 238():33-40. PubMed ID: 28119150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exercise training increases inwardly rectifying K(+) current and augments K(+)-mediated vasodilatation in deep femoral artery of rats.
    Jin CZ; Kim HS; Seo EY; Shin DH; Park KS; Chun YS; Zhang YH; Kim SJ
    Cardiovasc Res; 2011 Jul; 91(1):142-50. PubMed ID: 21349874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of K+ATP channels in coronary vasodilation during exercise.
    Duncker DJ; Van Zon NS; Altman JD; Pavek TJ; Bache RJ
    Circulation; 1993 Sep; 88(3):1245-53. PubMed ID: 8353886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prior exercise training produces NO-dependent increases in collateral blood flow after acute arterial occlusion.
    Yang HT; Ren J; Laughlin MH; Terjung RL
    Am J Physiol Heart Circ Physiol; 2002 Jan; 282(1):H301-10. PubMed ID: 11748075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevated extracellular potassium prior to muscle contraction reduces onset and steady-state exercise hyperemia in humans.
    Terwoord JD; Hearon CM; Luckasen GJ; Richards JC; Joyner MJ; Dinenno FA
    J Appl Physiol (1985); 2018 Aug; 125(2):615-623. PubMed ID: 29722620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Types of potassium channels involved in coronary reactive hyperemia depend on duration of preceding ischemia in rat hearts.
    Shinoda M; Toki Y; Murase K; Mokuno S; Okumura K; Ito T
    Life Sci; 1997; 61(10):997-1007. PubMed ID: 9296338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Downhill running: a model of exercise hyperemia in the rat spinotrapezius muscle.
    Kano Y; Padilla D; Hageman KS; Poole DC; Musch TI
    J Appl Physiol (1985); 2004 Sep; 97(3):1138-42. PubMed ID: 15133005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuronal nitric oxide synthase regulation of skeletal muscle functional hyperemia: exercise training and moderate compensated heart failure.
    Hirai DM; Copp SW; Ferguson SK; Holdsworth CT; Hageman KS; Poole DC; Musch TI
    Nitric Oxide; 2018 Apr; 74():1-9. PubMed ID: 29288804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two weeks of muscle immobilization impairs functional sympatholysis but increases exercise hyperemia and the vasodilatory responsiveness to infused ATP.
    Mortensen SP; Mørkeberg J; Thaning P; Hellsten Y; Saltin B
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2074-82. PubMed ID: 22408019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of nitric oxide synthase inhibition on vascular conductance during high speed treadmill exercise in rats.
    Musch TI; McAllister RM; Symons JD; Stebbins CL; Hirai T; Hageman KS; Poole DC
    Exp Physiol; 2001 Nov; 86(6):749-57. PubMed ID: 11698969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg.
    Mortensen SP; González-Alonso J; Damsgaard R; Saltin B; Hellsten Y
    J Physiol; 2007 Jun; 581(Pt 2):853-61. PubMed ID: 17347273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade.
    Hellsten Y; Krustrup P; Iaia FM; Secher NH; Bangsbo J
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1106-12. PubMed ID: 19193948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of aging on muscle blood flow in chronic heart failure.
    Eklund KE; Hageman KS; Poole DC; Musch TI
    J Appl Physiol (1985); 2005 Aug; 99(2):505-14. PubMed ID: 15802367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atropine: no effect on exercise muscle hyperemia in conscious rats.
    Armstrong RB; Laughlin MH
    J Appl Physiol (1985); 1986 Aug; 61(2):679-82. PubMed ID: 3745060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Training effects on the regional blood flow response to exercise in myocardial infarcted rats.
    Musch TI; Nguyen CT; Pham HV; Moore RL
    Am J Physiol; 1992 Jun; 262(6 Pt 2):H1846-52. PubMed ID: 1621843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rat hindlimb muscle blood flow during level and downhill locomotion.
    Delp MD; Duan C; Ray CA; Armstrong RB
    J Appl Physiol (1985); 1999 Feb; 86(2):564-8. PubMed ID: 9931192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.