BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 25820421)

  • 1. Modeling the relationship of epigenetic modifications to transcription factor binding.
    Liu L; Jin G; Zhou X
    Nucleic Acids Res; 2015 Apr; 43(8):3873-85. PubMed ID: 25820421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling co-occupancy of transcription factors using chromatin features.
    Liu L; Zhao W; Zhou X
    Nucleic Acids Res; 2016 Mar; 44(5):e49. PubMed ID: 26590261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone modifications are associated with transcript isoform diversity in normal and cancer cells.
    Podlaha O; De S; Gonen M; Michor F
    PLoS Comput Biol; 2014 Jun; 10(6):e1003611. PubMed ID: 24901363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding transcriptional regulation by integrative analysis of transcription factor binding data.
    Cheng C; Alexander R; Min R; Leng J; Yip KY; Rozowsky J; Yan KK; Dong X; Djebali S; Ruan Y; Davis CA; Carninci P; Lassman T; Gingeras TR; Guigó R; Birney E; Weng Z; Snyder M; Gerstein M
    Genome Res; 2012 Sep; 22(9):1658-67. PubMed ID: 22955978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity.
    Sammons MA; Zhu J; Drake AM; Berger SL
    Genome Res; 2015 Feb; 25(2):179-88. PubMed ID: 25391375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative binding of transcription factors in the human genome.
    Nie Y; Shu C; Sun X
    Genomics; 2020 Sep; 112(5):3427-3434. PubMed ID: 32574834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.
    Chen CC; Xiao S; Xie D; Cao X; Song CX; Wang T; He C; Zhong S
    PLoS Comput Biol; 2013; 9(12):e1003367. PubMed ID: 24339764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of transcription factors binding events based on epigenetic modifications in different human cells.
    Huang Y; Zhou D; Wang Y; Zhang X; Su M; Wang C; Sun Z; Jiang Q; Sun B; Zhang Y
    Epigenomics; 2020 Aug; 12(16):1443-1456. PubMed ID: 32921165
    [No Abstract]   [Full Text] [Related]  

  • 9. H3K4 tri-methylation breadth at transcription start sites impacts the transcriptome of systemic lupus erythematosus.
    Zhang Z; Shi L; Dawany N; Kelsen J; Petri MA; Sullivan KE
    Clin Epigenetics; 2016; 8():14. PubMed ID: 26839600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical Link Between Epigenetics and Transcription Factors in the Induction of Autoimmunity: a Comprehensive Review.
    Wu H; Zhao M; Yoshimura A; Chang C; Lu Q
    Clin Rev Allergy Immunol; 2016 Jun; 50(3):333-44. PubMed ID: 26969025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosome Organization in Human Embryonic Stem Cells.
    Yazdi PG; Pedersen BA; Taylor JF; Khattab OS; Chen YH; Chen Y; Jacobsen SE; Wang PH
    PLoS One; 2015; 10(8):e0136314. PubMed ID: 26305225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the relative relationship of transcription factor binding and histone modifications to gene expression levels in mouse embryonic stem cells.
    Cheng C; Gerstein M
    Nucleic Acids Res; 2012 Jan; 40(2):553-68. PubMed ID: 21926158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels.
    Banovich NE; Lan X; McVicker G; van de Geijn B; Degner JF; Blischak JD; Roux J; Pritchard JK; Gilad Y
    PLoS Genet; 2014 Sep; 10(9):e1004663. PubMed ID: 25233095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the key histone modifications on the expression of genes related to breast cancer.
    Jin W; Li QZ; Liu Y; Zuo YC
    Genomics; 2020 Jan; 112(1):853-858. PubMed ID: 31170440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Analysis of the Distinct Types of Chromatin Interactions in Arabidopsis thaliana.
    Wang J; Zhou Y; Li X; Meng X; Fan M; Chen H; Xue J; Chen M
    Plant Cell Physiol; 2017 Jan; 58(1):57-70. PubMed ID: 28064247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between different epigenetic modifications and mechanisms.
    Murr R
    Adv Genet; 2010; 70():101-41. PubMed ID: 20920747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DNA methylation profile of liver tumors in C3H mice and identification of differentially methylated regions involved in the regulation of tumorigenic genes.
    Matsushita J; Okamura K; Nakabayashi K; Suzuki T; Horibe Y; Kawai T; Sakurai T; Yamashita S; Higami Y; Ichihara G; Hata K; Nohara K
    BMC Cancer; 2018 Mar; 18(1):317. PubMed ID: 29566670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.
    Liu X; Wang C; Liu W; Li J; Li C; Kou X; Chen J; Zhao Y; Gao H; Wang H; Zhang Y; Gao Y; Gao S
    Nature; 2016 Sep; 537(7621):558-562. PubMed ID: 27626379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.