BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25820483)

  • 21. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Jan; 96(1):61-70. PubMed ID: 17031859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of temperature history on the freeze-thawing process and activity of LDH formulations.
    Aldén M; Magnusson A
    Pharm Res; 1997 Apr; 14(4):426-30. PubMed ID: 9144726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of mannitol crystallization in mannitol-sucrose systems on LDH stability during freeze-drying.
    Al-Hussein A; Gieseler H
    J Pharm Sci; 2012 Jul; 101(7):2534-44. PubMed ID: 22535541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation.
    Kolhe P; Amend E; Singh SK
    Biotechnol Prog; 2010; 26(3):727-33. PubMed ID: 20039442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of polyethylene glycol molecular weight and concentration on lactate dehydrogenase activity in solution and after freeze-thawing.
    Mi Y; Wood G; Thoma L; Rashed S
    PDA J Pharm Sci Technol; 2002; 56(3):115-23. PubMed ID: 12109331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of process conditions on recovery of protein activity after freezing and freeze-drying.
    Jiang S; Nail SL
    Eur J Pharm Biopharm; 1998 May; 45(3):249-57. PubMed ID: 9653629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protection of a model protein, lactate dehydrogenase by encapsulation in liposome.
    Nema S; Avis KE
    PDA J Pharm Sci Technol; 1996; 50(4):213-8. PubMed ID: 8810835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A beetle antifreeze protein protects lactate dehydrogenase under freeze-thawing.
    Rodriguez C; Sajjadi S; Abrol R; Wen X
    Int J Biol Macromol; 2019 Sep; 136():1153-1160. PubMed ID: 31226372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze-thawing.
    Kueltzo LA; Wang W; Randolph TW; Carpenter JF
    J Pharm Sci; 2008 May; 97(5):1801-12. PubMed ID: 17823949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison between the protection of LDH during freeze-thawing by PEG 6000 and Brij 35 at low concentrations.
    Hillgren A; Aldén M
    Int J Pharm; 2002 Sep; 244(1-2):137-49. PubMed ID: 12204573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oligosaccharide-based Surfactant/Citric Acid Buffer System Stabilizes Lactate Dehydrogenase during Freeze-drying and Storage without the Addition of Natural Sugar.
    Ogawa S; Kawai R; Koga M; Asakura K; Takahashi I; Osanai S
    J Oleo Sci; 2016 Jun; 65(6):525-32. PubMed ID: 27181251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Freezing-induced protein aggregation - Role of pH shift and potential mitigation strategies.
    Thorat AA; Munjal B; Geders TW; Suryanarayanan R
    J Control Release; 2020 Jul; 323():591-599. PubMed ID: 32335158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Considerations on Protein Stability During Freezing and Its Impact on the Freeze-Drying Cycle: A Design Space Approach.
    Arsiccio A; Giorsello P; Marenco L; Pisano R
    J Pharm Sci; 2020 Jan; 109(1):464-475. PubMed ID: 31647953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term Stability of Esomeprazole in 5% Dextrose Infusion Polyolefin Bags at 5 degrees C +/- 3 degrees C after Microwave Freeze-thaw Treatment.
    Hecq JD; Rolin C; Godet M; Gillet P; Jamart J; Galanti LM
    Int J Pharm Compd; 2015; 19(6):521-4. PubMed ID: 26891566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid optimization of protein freeze-drying formulations using ultra scale-down and factorial design of experiment in microplates.
    Grant Y; Matejtschuk P; Dalby PA
    Biotechnol Bioeng; 2009 Dec; 104(5):957-64. PubMed ID: 19530082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Freeze-thaw characterization process to minimize aggregation and enable drug product manufacturing of protein based therapeutics.
    Jain K; Salamat-Miller N; Taylor K
    Sci Rep; 2021 May; 11(1):11332. PubMed ID: 34059716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins, part 2: stability during storage at elevated temperatures.
    Schersch K; Betz O; Garidel P; Muehlau S; Bassarab S; Winter G
    J Pharm Sci; 2012 Jul; 101(7):2288-306. PubMed ID: 22517663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable high surface area lactate dehydrogenase particles produced by spray freezing into liquid nitrogen.
    Engstrom JD; Simpson DT; Cloonan C; Lai ES; Williams RO; Barrie Kitto G; Johnston KP
    Eur J Pharm Biopharm; 2007 Feb; 65(2):163-74. PubMed ID: 17027245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of parameters of freezing medium and freezing protocol for bull sperm using two osmotic supports.
    Chaveiro A; Machado L; Frijters A; Engel B; Woelders H
    Theriogenology; 2006 Jun; 65(9):1875-90. PubMed ID: 16310842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature Based Process Characterization of Pharmaceutical Freeze-Thaw Operations.
    Weber D; Hubbuch J
    Front Bioeng Biotechnol; 2021; 9():617770. PubMed ID: 33898399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.