These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25820483)

  • 81. Chemical and physical stability of chimeric L6, a mouse-human monoclonal antibody.
    Paborji M; Pochopin NL; Coppola WP; Bogardus JB
    Pharm Res; 1994 May; 11(5):764-71. PubMed ID: 8058650
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The mechanism of cryoprotection of proteins by solutes.
    Carpenter JF; Crowe JH
    Cryobiology; 1988 Jun; 25(3):244-55. PubMed ID: 3396389
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants.
    Chang BS; Kendrick BS; Carpenter JF
    J Pharm Sci; 1996 Dec; 85(12):1325-30. PubMed ID: 8961147
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A phase diagram-based toolbox to assess the impact of freeze/thaw ramps on the phase behavior of proteins.
    Wöll AK; Desombre M; Enghauser L; Hubbuch J
    Bioprocess Biosyst Eng; 2020 Feb; 43(2):179-192. PubMed ID: 31563976
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Effect of chemical modifications on freeze denaturation of lactate dehydrogenase.
    Seguro K; Tamiya T; Tsuchiya T; Matsumoto JJ
    Cryobiology; 1989 Apr; 26(2):154-61. PubMed ID: 2707030
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Formation of stable submicron protein particles by thin film freezing.
    Engstrom JD; Lai ES; Ludher BS; Chen B; Milner TE; Williams RO; Kitto GB; Johnston KP
    Pharm Res; 2008 Jun; 25(6):1334-46. PubMed ID: 18286357
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Protein Nanoparticles Promote Microparticle Formation in Intravenous Immunoglobulin Solutions During Freeze-Thawing and Agitation Stresses.
    Pardeshi NN; Zhou C; Randolph TW; Carpenter JF
    J Pharm Sci; 2018 Jul; 107(7):1852-1857. PubMed ID: 29601840
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Computational fluid dynamic simulations of temperature, cryoconcentration, and stress time during large-scale freezing and thawing of monoclonal antibody solutions.
    Bluemel O; Pavlišič A; Likozar B; Rodrigues MA; Geraldes V; Bechtold-Peters K; Friess W
    Eur J Pharm Biopharm; 2022 Aug; 177():107-112. PubMed ID: 35764219
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Chemical degradation of 3H-labeled substance P in tris buffer solution.
    Higa T; Desiderio DM
    Anal Biochem; 1988 Sep; 173(2):463-8. PubMed ID: 2461123
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A New Perspective on Scale-Down Strategies for Freezing of Biopharmaceutics by Means of Computational Fluid Dynamics.
    Geraldes V; Gomes DC; Rego P; Fegley D; Rodrigues MA
    J Pharm Sci; 2020 Jun; 109(6):1978-1989. PubMed ID: 32097655
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A Nondestructive Method for Measuring Protein Distribution in Frozen Drug Substance.
    Du C; Borwankar A; Singh N; Borys M; Li ZJ
    J Pharm Sci; 2017 Aug; 106(8):1978-1986. PubMed ID: 28483421
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Urea-mediated freeze-thaw hybridization of lactate dehydrogenase.
    Massaro EJ
    Biochim Biophys Acta; 1967 Sep; 147(1):45-51. PubMed ID: 6052509
    [No Abstract]   [Full Text] [Related]  

  • 93. Apparent protein cloud point temperature determination using a low volume high-throughput cryogenic device in combination with automated imaging.
    Klijn ME; Wöll AK; Hubbuch J
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):439-456. PubMed ID: 31754791
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Studies on the multiplication and the properties of the lactic dehydrogenase agent.
    NOTKINS AL; SHOCHAT SJ
    J Exp Med; 1963 May; 117(5):735-47. PubMed ID: 13939042
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Examining the freezing process of an intermediate bulk containing an industrially relevant protein.
    Reinsch H; Spadiut O; Heidingsfelder J; Herwig C
    Enzyme Microb Technol; 2015 Apr; 71():13-9. PubMed ID: 25765305
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Cryotolerance of enzymes. I. Freezing of lactic dehydrogenase.
    Greiff D; Kelly RT
    Cryobiology; 1966; 2(6):335-41. PubMed ID: 6006598
    [No Abstract]   [Full Text] [Related]  

  • 97. Correction to: Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing.
    Hauptmann A; Podgoršek K; Kuzman D; Srčič S; Hoelzl G; Loerting T
    Pharm Res; 2019 Jul; 36(9):132. PubMed ID: 31286268
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Enhancing chemical and physical stability of pharmaceuticals using freeze-thaw method: challenges and opportunities for process optimization through quality by design approach.
    Bernal-Chávez SA; Romero-Montero A; Hernández-Parra H; Peña-Corona SI; Del Prado-Audelo ML; Alcalá-Alcalá S; Cortés H; Kiyekbayeva L; Sharifi-Rad J; Leyva-Gómez G
    J Biol Eng; 2023 May; 17(1):35. PubMed ID: 37221599
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effect of Buffer Salts on Physical Stability of Lyophilized and Spray-Dried Protein Formulations Containing Bovine Serum Albumin and Trehalose.
    Mutukuri TT; Ling J; Du Y; Su Y; Zhou QT
    Pharm Res; 2023 Jun; 40(6):1355-1371. PubMed ID: 35764755
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.