BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25820724)

  • 1. Chloroplast isolation and affinity chromatography for enrichment of low-abundant proteins in complex proteomes.
    Bayer RG; Stael S; Teige M
    Methods Mol Biol; 2015; 1295():211-23. PubMed ID: 25820724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroplast Isolation and Enrichment of Low-Abundance Proteins by Affinity Chromatography for Identification in Complex Proteomes.
    Bayer RG; Stael S; Teige M
    Methods Mol Biol; 2021; 2261():535-547. PubMed ID: 33421013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of cell lysis and protein digestion protocols for protein analysis by LC-MS/MS.
    Winter D; Dehghani A; Steen H
    Methods Mol Biol; 2015; 1295():259-73. PubMed ID: 25820728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes.
    Faca V; Pitteri SJ; Newcomb L; Glukhova V; Phanstiel D; Krasnoselsky A; Zhang Q; Struthers J; Wang H; Eng J; Fitzgibbon M; McIntosh M; Hanash S
    J Proteome Res; 2007 Sep; 6(9):3558-65. PubMed ID: 17696519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and proteomic analysis of chloroplasts and their sub-organellar compartments.
    Salvi D; Rolland N; Joyard J; Ferro M
    Methods Mol Biol; 2008; 432():19-36. PubMed ID: 18370008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of subcellular organelles and structures.
    Michelsen U; von Hagen J
    Methods Enzymol; 2009; 463():305-28. PubMed ID: 19892179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular Proteomics in Conifers: Purification of Nuclei and Chloroplast Proteomes.
    Lamelas L; García L; Cañal MJ; Meijón M
    Methods Mol Biol; 2020; 2139():69-78. PubMed ID: 32462578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of alternative analytical techniques for the characterisation of the human serum proteome in HUPO Plasma Proteome Project.
    Li X; Gong Y; Wang Y; Wu S; Cai Y; He P; Lu Z; Ying W; Zhang Y; Jiao L; He H; Zhang Z; He F; Zhao X; Qian X
    Proteomics; 2005 Aug; 5(13):3423-41. PubMed ID: 16052619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative proteomic analysis to profile dynamic changes in the spatial distribution of cellular proteins.
    Yan W; Hwang D; Aebersold R
    Methods Mol Biol; 2008; 432():389-401. PubMed ID: 18370032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular fractionation for identification of biomarkers: serial detergent extraction by subcellular accessibility and solubility.
    Hwang SI; Han DK
    Methods Mol Biol; 2013; 1002():25-35. PubMed ID: 23625392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-depth analysis of low abundant proteins in bovine colostrum using different fractionation techniques.
    Nissen A; Bendixen E; Ingvartsen KL; Røntved CM
    Proteomics; 2012 Sep; 12(18):2866-78. PubMed ID: 22848049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry.
    Vanrobaeys F; Van Coster R; Dhondt G; Devreese B; Van Beeumen J
    J Proteome Res; 2005; 4(6):2283-93. PubMed ID: 16335977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins.
    Bhattacharya O; Ortiz I; Walling LL
    Plant Methods; 2020; 16():131. PubMed ID: 32983250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of stroma, thylakoid membrane, and lumen fractions from Arabidopsis thaliana chloroplasts for proteomic analysis.
    Hall M; Mishra Y; Schröder WP
    Methods Mol Biol; 2011; 775():207-22. PubMed ID: 21863445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An off-line high pH reversed-phase fractionation and nano-liquid chromatography-mass spectrometry method for global proteomic profiling of cell lines.
    Wang H; Sun S; Zhang Y; Chen S; Liu P; Liu B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 974():90-5. PubMed ID: 25463202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for revealing lower abundance proteins in two-dimensional protein maps.
    Ahmed N; Rice GE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):39-50. PubMed ID: 15652797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shotgun proteomic analysis of Arabidopsis thaliana leaves.
    Lee J; Garrett WM; Cooper B
    J Sep Sci; 2007 Sep; 30(14):2225-30. PubMed ID: 17654619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of gas-phase fractionation to increase protein identifications : application to the peroxisome.
    Kennedy J; Yi EC
    Methods Mol Biol; 2008; 432():217-28. PubMed ID: 18370021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples.
    Horvatovich P; Hoekman B; Govorukhina N; Bischoff R
    J Sep Sci; 2010 Jun; 33(10):1421-37. PubMed ID: 20486207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.