BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25821008)

  • 21. Cigarette smoke-induced disruption of bronchial epithelial tight junctions is prevented by transforming growth factor-β.
    Schamberger AC; Mise N; Jia J; Genoyer E; Yildirim AÖ; Meiners S; Eickelberg O
    Am J Respir Cell Mol Biol; 2014 Jun; 50(6):1040-52. PubMed ID: 24358952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Primary human nasal epithelial cells: a source of poly (I:C) LMW-induced IL-6 production.
    Ramezanpour M; Bolt H; Psaltis AJ; Wormald PJ; Vreugde S
    Sci Rep; 2018 Jul; 8(1):11325. PubMed ID: 30054566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oncostatin M Contributes to Airway Epithelial Cell Dysfunction in Chronic Rhinosinusitis with Nasal Polyps.
    Carsuzaa F; Bequignon E; Bartier S; Coste A; Dufour X; Bainaud M; Lecron JC; Louis B; Tringali S; Favot L; Fieux M
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversal of cigarette smoke extract-induced sinonasal epithelial cell barrier dysfunction through Nrf2 Activation.
    Tharakan A; Halderman AA; Lane AP; Biswal S; Ramanathan M
    Int Forum Allergy Rhinol; 2016 Nov; 6(11):1145-1150. PubMed ID: 27580429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A human nasal explant model to study Staphylococcus aureus biofilm in vitro.
    Cantero D; Cooksley C; Jardeleza C; Bassiouni A; Jones D; Wormald PJ; Vreugde S
    Int Forum Allergy Rhinol; 2013 Jul; 3(7):556-62. PubMed ID: 23404931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Indocyanine green concentrations used in chromovitrectomy cause a reversible functional alteration in the outer blood-retinal barrier.
    Liu Z; Meyer CH; Fimmers R; Stanzel BV;
    Acta Ophthalmol; 2014 Mar; 92(2):e147-55. PubMed ID: 23889821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GLP-2 enhances barrier formation and attenuates TNFα-induced changes in a Caco-2 cell model of the intestinal barrier.
    Moran GW; O'Neill C; McLaughlin JT
    Regul Pept; 2012 Oct; 178(1-3):95-101. PubMed ID: 22809889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of novel vital dyes on outer blood-retina barrier function in cultured human retinal pigment epithelium.
    Liu Z; Meyer CH; Stanzel BV;
    Ophthalmologica; 2013; 230 Suppl 2():33-40. PubMed ID: 24022717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Murine tracheal and nasal septal epithelium for air-liquid interface cultures: a comparative study.
    Woodworth BA; Antunes MB; Bhargave G; Palmer JN; Cohen NA
    Am J Rhinol; 2007; 21(5):533-7. PubMed ID: 17999784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlation of the presence of blood-brain barrier tight junctions and expression of zonula occludens protein ZO-1 in vitro: a freeze-fracture and immunofluorescence study.
    Gao P; Shivers RR
    J Submicrosc Cytol Pathol; 2004 Jan; 36(1):7-15. PubMed ID: 15311669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients.
    Wawrzyniak P; Wawrzyniak M; Wanke K; Sokolowska M; Bendelja K; Rückert B; Globinska A; Jakiela B; Kast JI; Idzko M; Akdis M; Sanak M; Akdis CA
    J Allergy Clin Immunol; 2017 Jan; 139(1):93-103. PubMed ID: 27312821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interleukin-13 Alters Tight Junction Proteins Expression Thereby Compromising Barrier Function and Dampens Rhinovirus Induced Immune Responses in Nasal Epithelium.
    Huang ZQ; Liu J; Ong HH; Yuan T; Zhou XM; Wang J; Tan KS; Chow VT; Yang QT; Shi L; Ye J; Wang DY
    Front Cell Dev Biol; 2020; 8():572749. PubMed ID: 33102478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier.
    Grainger CI; Greenwell LL; Lockley DJ; Martin GP; Forbes B
    Pharm Res; 2006 Jul; 23(7):1482-90. PubMed ID: 16779708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Association between mucosal barrier disruption by Pseudomonas aeruginosa exoproteins and asthma in patients with chronic rhinosinusitis.
    Tuli JF; Ramezanpour M; Cooksley C; Psaltis AJ; Wormald PJ; Vreugde S
    Allergy; 2021 Nov; 76(11):3459-3469. PubMed ID: 34033126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epithelial physical barrier defects in chronic rhinosinusitis.
    Jiao J; Wang C; Zhang L
    Expert Rev Clin Immunol; 2019 Jun; 15(6):679-688. PubMed ID: 30925220
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Huang S; Hon K; Bennett C; Hu H; Menberu M; Wormald PJ; Zhao Y; Vreugde S; Liu S
    Front Microbiol; 2022; 13():984741. PubMed ID: 36187946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Small-colony variants and phenotype switching of intracellular Staphylococcus aureus in chronic rhinosinusitis.
    Tan NC; Cooksley CM; Roscioli E; Drilling AJ; Douglas R; Wormald PJ; Vreugde S
    Allergy; 2014 Oct; 69(10):1364-71. PubMed ID: 24922342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interleukin-1beta-induced disruption of barrier function in cultured human corneal epithelial cells.
    Kimura K; Teranishi S; Nishida T
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):597-603. PubMed ID: 19171646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Staphylococcus aureus in nasal lavage and biopsy of patients with chronic rhinosinusitis.
    Niederfuhr A; Kirsche H; Deutschle T; Poppert S; Riechelmann H; Wellinghausen N
    Allergy; 2008 Oct; 63(10):1359-67. PubMed ID: 18782116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The multiplicity of Staphylococcus aureus in chronic rhinosinusitis: correlating surface biofilm and intracellular residence.
    Tan NC; Foreman A; Jardeleza C; Douglas R; Tran H; Wormald PJ
    Laryngoscope; 2012 Aug; 122(8):1655-60. PubMed ID: 22549739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.