These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25821137)

  • 1. The DFT local reactivity descriptors of α-tocopherol.
    Fabijanić I; Jakobušić Brala C; Pilepić V
    J Mol Model; 2015 Apr; 21(4):99. PubMed ID: 25821137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional reactivity theory characterizes charge separation propensity in proton-coupled electron transfer reactions.
    Liu S; Ess DH; Schauer CK
    J Phys Chem A; 2011 May; 115(18):4738-42. PubMed ID: 21506583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, DFT Calculations, and In Vitro Antioxidant Study on Novel Carba-Analogs of Vitamin E.
    Baj A; Cedrowski J; Olchowik-Grabarek E; Ratkiewicz A; Witkowski S
    Antioxidants (Basel); 2019 Nov; 8(12):. PubMed ID: 31779214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton-Coupled Electron Transfer and Hydrogen Tunneling in Olive Oil Phenol Reactions.
    Torić J; Karković Marković A; Mustać S; Pulitika A; Jakobušić Brala C; Pilepić V
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton-coupled electron transfer with photoexcited metal complexes.
    Wenger OS
    Acc Chem Res; 2013 Jul; 46(7):1517-26. PubMed ID: 23402212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is Vitamin A an Antioxidant or a Pro-oxidant?
    Dao DQ; Ngo TC; Thong NM; Nam PC
    J Phys Chem B; 2017 Oct; 121(40):9348-9357. PubMed ID: 28937764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How lipid unsaturation, peroxyl radical partitioning, and chromanol lipophilic tail affect the antioxidant activity of α-tocopherol: direct visualization via high-throughput fluorescence studies conducted with fluorogenic α-tocopherol analogues.
    Krumova K; Friedland S; Cosa G
    J Am Chem Soc; 2012 Jun; 134(24):10102-13. PubMed ID: 22568598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximizing the reactivity of phenolic and aminic radical-trapping antioxidants: just add nitrogen!
    Valgimigli L; Pratt DA
    Acc Chem Res; 2015 Apr; 48(4):966-75. PubMed ID: 25839082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical and Mechanistic Study of Reactivities of α-, β-, γ-, and δ-Tocopherol toward Electrogenerated Superoxide in
    Nakayama T; Honda R; Kuwata K; Usui S; Uno B
    Antioxidants (Basel); 2021 Dec; 11(1):. PubMed ID: 35052513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MPW1K Performs Much Better than B3LYP in DFT Calculations on Reactions that Proceed by Proton-Coupled Electron Transfer (PCET).
    Lingwood M; Hammond JR; Hrovat DA; Mayer JM; Borden WT
    J Chem Theory Comput; 2006; 2(3):740-745. PubMed ID: 18725967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-bond relays in concerted proton-electron transfers.
    Bonin J; Costentin C; Robert M; Savéant JM; Tard C
    Acc Chem Res; 2012 Mar; 45(3):372-81. PubMed ID: 22029773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lone pair-pi and pi-pi interactions play an important role in proton-coupled electron transfer reactions.
    DiLabio GA; Johnson ER
    J Am Chem Soc; 2007 May; 129(19):6199-203. PubMed ID: 17444643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow hydrogen atom self-exchange between Os(IV) anilide and Os(III) aniline complexes: relationships with electron and proton transfer self-exchange.
    Soper JD; Mayer JM
    J Am Chem Soc; 2003 Oct; 125(40):12217-29. PubMed ID: 14519007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radical scavenging activity characterization of synthetic isochroman-derivatives of hydroxytyrosol: A gas-phase DFT approach.
    Nenadis N; Siskos D
    Food Res Int; 2015 Oct; 76(Pt 3):506-510. PubMed ID: 28455031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.
    Anglada JM; Crehuet R; Adhikari S; Francisco JS; Xia Y
    Phys Chem Chem Phys; 2018 Feb; 20(7):4793-4804. PubMed ID: 29383342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorine atom substitution influences radical scavenging activity of 6-chromanol.
    Inami K; Iizuka Y; Furukawa M; Nakanishi I; Ohkubo K; Fukuhara K; Fukuzumi S; Mochizuki M
    Bioorg Med Chem; 2012 Jul; 20(13):4049-55. PubMed ID: 22658540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.
    Sirjoosingh A; Hammes-Schiffer S
    J Phys Chem A; 2011 Mar; 115(11):2367-77. PubMed ID: 21351757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping of the OH radical by alpha-tocopherol: a theoretical study.
    Navarrete M; Rangel C; Corchado JC; Espinosa-García J
    J Phys Chem A; 2005 Jun; 109(21):4777-84. PubMed ID: 16833821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breaking bonds with electrons and protons. Models and examples.
    Costentin C; Robert M; Savéant JM; Tard C
    Acc Chem Res; 2014 Jan; 47(1):271-80. PubMed ID: 24016042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.