These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25821243)

  • 1. The design of trapping devices in pollination traps of the genus
    Bröderbauer D; Weber A; Diaz A
    Bot J Linn Soc; 2013 Jul; 172(3):385-397. PubMed ID: 25821243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing the origin and elaboration of insect-trapping inflorescences in the Araceae.
    Bröderbauer D; Diaz A; Weber A
    Am J Bot; 2012 Oct; 99(10):1666-79. PubMed ID: 22965851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptations for insect-trapping in brood-site pollinated Colocasia (Araceae).
    Bröderbauer D; Ulrich S; Weber A
    Plant Biol (Stuttg); 2014 May; 16(3):659-68. PubMed ID: 24119060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic analysis of deceptively pollinated Arum maculatum (Araceae) reveals association between terpene synthase expression in floral trap chamber and species-specific pollinator attraction.
    Szenteczki MA; Godschalx AL; Gauthier J; Gibernau M; Rasmann S; Alvarez N
    G3 (Bethesda); 2022 Aug; 12(9):. PubMed ID: 35861391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergence in floral scent and morphology, but not thermogenic traits, associated with pollinator shift in two brood-site-mimicking Typhonium (Araceae) species.
    Sayers TDJ; Johnson KL; Steinbauer MJ; Farnier K; Miller RE
    Ann Bot; 2021 Aug; 128(3):261-280. PubMed ID: 33758905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of pollinator-plant interaction types in the Araceae.
    Chartier M; Gibernau M; Renner SS
    Evolution; 2014 May; 68(5):1533-43. PubMed ID: 24274161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical imitation of yeast fermentation by the drosophilid-pollinated deceptive trap-flower Aristolochia baetica (Aristolochiaceae).
    Rupp T; Oelschlägel B; Berjano R; Mahfoud H; Buono D; Wenke T; Rabitsch K; Bächli G; Stanojlovic V; Cabrele C; Xiong W; Knaden M; Dahl A; Neinhuis C; Wanke S; Dötterl S
    Phytochemistry; 2024 Aug; 224():114142. PubMed ID: 38762152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pollination syndromes in a specialised plant-pollinator interaction: does floral morphology predict pollinators in Calceolaria?
    Murúa M; Espíndola A
    Plant Biol (Stuttg); 2015 Mar; 17(2):551-7. PubMed ID: 25115902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lady's 'slippery' orchid: functions of the floral trap and aphid mimicry in a hoverfly-pollinated Phragmipedium species in Brazil.
    Cardoso JCF; Johnson SD; Rezende UC; Oliveira PE
    Ann Bot; 2023 Mar; 131(2):275-286. PubMed ID: 36479901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scent matters: differential contribution of scent to insect response in flowers with insect vs. wind pollination traits.
    Wang TN; Clifford MR; Martínez-Gómez J; Johnson JC; Riffell JA; Di Stilio VS
    Ann Bot; 2019 Jan; 123(2):289-301. PubMed ID: 30052759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orchid pollination by sexual deception: pollinator perspectives.
    Gaskett AC
    Biol Rev Camb Philos Soc; 2011 Feb; 86(1):33-75. PubMed ID: 20377574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Floral isolation, specialized pollination, and pollinator behavior in orchids.
    Schiestl FP; Schlüter PM
    Annu Rev Entomol; 2009; 54():425-46. PubMed ID: 19067636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pollinator-prey conflicts in carnivorous plants: When flower and trap properties mean life or death.
    El-Sayed AM; Byers JA; Suckling DM
    Sci Rep; 2016 Feb; 6():21065. PubMed ID: 26888545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Dependent Trapping of Pollinators Driven by the Alignment of Floral Phenology with Insect Circadian Rhythms.
    Lau JYY; Guo X; Pang CC; Tang CC; Thomas DC; Saunders RMK
    Front Plant Sci; 2017; 8():1119. PubMed ID: 28713403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal variation in the pollination systems of a supergeneralist plant: is Angelica sylvestris (Apiaceae) locally adapted to its most effective pollinators?
    Zych M; Junker RR; Nepi M; Stpiczynska M; Stolarska B; Roguz K
    Ann Bot; 2019 Jan; 123(2):415-428. PubMed ID: 30059963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disentangling historical signal and pollinator selection on the micromorphology of flowers: an example from the floral epidermis of the Nymphaeaceae.
    Coiro M; Barone Lumaga MR
    Plant Biol (Stuttg); 2018 Sep; 20(5):902-915. PubMed ID: 29869401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for stabilising selection acting on flowering time in Arum maculatum (Araceae): the influence of phylogeny on adaptation.
    Ollerton J; Diaz A
    Oecologia; 1999 May; 119(3):340-348. PubMed ID: 28307756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neither insects nor wind: ambophily in dioecious Chamaedorea palms (Arecaceae).
    Rios LD; Fuchs EJ; Hodel DR; Cascante-Marín A
    Plant Biol (Stuttg); 2014 Jul; 16(4):702-10. PubMed ID: 25068158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex interactions underlie the correlated evolution of floral traits and their association with pollinators in a clade with diverse pollination systems.
    Rose JP; Sytsma KJ
    Evolution; 2021 Jun; 75(6):1431-1449. PubMed ID: 33818785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grip and slip: mechanical interactions between insects and the epidermis of flowers and flower stalks.
    Whitney HM; Federle W; Glover BJ
    Commun Integr Biol; 2009 Nov; 2(6):505-8. PubMed ID: 20195456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.