These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25821267)

  • 21. Complex Brines and Their Implications for Habitability.
    Renno NO; Fischer E; Martínez G; Hanley J
    Life (Basel); 2021 Aug; 11(8):. PubMed ID: 34440591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability of the Liquid Water Phase on Mars: A Thermodynamic Analysis Considering Martian Atmospheric Conditions and Perchlorate Brine Solutions.
    Nair CPR; Unnikrishnan V
    ACS Omega; 2020 Apr; 5(16):9391-9397. PubMed ID: 32363291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial Communities in Saltpan Sediments Show Tolerance to Mars Analog Conditions, but Susceptibility to Chloride and Perchlorate Toxicity.
    Weingarten EA; Zee PC; Jackson CR
    Astrobiology; 2022 Jul; 22(7):838-850. PubMed ID: 35731161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DISTRIBUTION AND HABITABILITY OF (META)STABLE BRINES ON PRESENT-DAY MARS.
    Rivera-Valentín EG; Chevrier VF; Soto A; Martínez G
    Nat Astron; 2020 Aug; 4():756-761. PubMed ID: 33344776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial Growth in Chloride and Perchlorate Brines: Halotolerances and Salt Stress Responses of
    Heinz J; Waajen AC; Airo A; Alibrandi A; Schirmack J; Schulze-Makuch D
    Astrobiology; 2019 Nov; 19(11):1377-1387. PubMed ID: 31386567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brines in seepage channels as eluants for subsurface relict biomolecules on Mars?
    Wynn-Williams DD; Cabrol NA; Grin EA; Haberle RM; Stoker CR
    Astrobiology; 2001; 1(2):165-84. PubMed ID: 12467120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the existence and stability of liquid water on the surface of mars today.
    Kuznetz LH; Gan DC
    Astrobiology; 2002; 2(2):183-95. PubMed ID: 12469367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Martian subsurface cryosalt expansion and collapse as trigger for landslides.
    Bishop JL; Yeşilbaş M; Hinman NW; Burton ZFM; Englert PAJ; Toner JD; McEwen AS; Gulick VC; Gibson EK; Koeberl C
    Sci Adv; 2021 Feb; 7(6):. PubMed ID: 33536216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnesium sulphate salts and the history of water on Mars.
    Vaniman DT; Bish DL; Chipera SJ; Fialips CI; Carey JW; Feldman WC
    Nature; 2004 Oct; 431(7009):663-5. PubMed ID: 15470421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life.
    McKay CP; Stoker CR; Glass BJ; Davé AI; Davila AF; Heldmann JL; Marinova MM; Fairen AG; Quinn RC; Zacny KA; Paulsen G; Smith PH; Parro V; Andersen DT; Hecht MH; Lacelle D; Pollard WH
    Astrobiology; 2013 Apr; 13(4):334-53. PubMed ID: 23560417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subfreezing activity of microorganisms and the potential habitability of Mars' polar regions.
    Jakosky BM; Nealson KH; Bakermans C; Ley RE; Mellon MT
    Astrobiology; 2003; 3(2):343-50. PubMed ID: 14577883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physicochemical Parameters Limiting Growth of
    Heinz J; Rambags V; Schulze-Makuch D
    Life (Basel); 2021 Nov; 11(11):. PubMed ID: 34833070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars.
    Parro V; de Diego-Castilla G; Moreno-Paz M; Blanco Y; Cruz-Gil P; Rodríguez-Manfredi JA; Fernández-Remolar D; Gómez F; Gómez MJ; Rivas LA; Demergasso C; Echeverría A; Urtuvia VN; Ruiz-Bermejo M; García-Villadangos M; Postigo M; Sánchez-Román M; Chong-Díaz G; Gómez-Elvira J
    Astrobiology; 2011 Dec; 11(10):969-96. PubMed ID: 22149750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seasonal flows on warm Martian slopes.
    McEwen AS; Ojha L; Dundas CM; Mattson SS; Byrne S; Wray JJ; Cull SC; Murchie SL; Thomas N; Gulick VC
    Science; 2011 Aug; 333(6043):740-3. PubMed ID: 21817049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polar Volatiles on Mars--Theory versus Observation: Excess solid carbon dioxide is probably present in the north residual cap.
    Murray BC; Malin MC
    Science; 1973 Nov; 182(4111):437-43. PubMed ID: 17832453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resolution subsurface water-ice distributions on Mars.
    Bandfield JL
    Nature; 2007 May; 447(7140):64-7. PubMed ID: 17476262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water activity and the challenge for life on early Mars.
    Tosca NJ; Knoll AH; McLennan SM
    Science; 2008 May; 320(5880):1204-7. PubMed ID: 18511686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relative Humidity on Mars: New Results From the Phoenix TECP Sensor.
    Fischer E; Martínez GM; Rennó NO; Tamppari LK; Zent AP
    J Geophys Res Planets; 2019 Nov; 124(11):2780-2792. PubMed ID: 32025455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnesium Sulfate Salt Solutions and Ices Fail to Protect Serratia liquefaciens from the Biocidal Effects of UV Irradiation under Martian Conditions.
    Mickol RL; Page JL; Schuerger AC
    Astrobiology; 2017 May; 17(5):401-412. PubMed ID: 28459604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption water-related potential chemical and biological processes in the upper martian surface.
    Möhlmann D
    Astrobiology; 2005 Dec; 5(6):770-7. PubMed ID: 16379530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.