These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 25821414)
1. Quantum Monte Carlo Treatment of the Charge Transfer and Diradical Electronic Character in a Retinal Chromophore Minimal Model. Zen A; Coccia E; Gozem S; Olivucci M; Guidoni L J Chem Theory Comput; 2015 Mar; 11(3):992-1005. PubMed ID: 25821414 [TBL] [Abstract][Full Text] [Related]
2. Static and Dynamical Correlation in Diradical Molecules by Quantum Monte Carlo Using the Jastrow Antisymmetrized Geminal Power Ansatz. Zen A; Coccia E; Luo Y; Sorella S; Guidoni L J Chem Theory Comput; 2014 Mar; 10(3):1048-61. PubMed ID: 26580182 [TBL] [Abstract][Full Text] [Related]
3. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model. Gozem S; Huntress M; Schapiro I; Lindh R; Granovsky AA; Angeli C; Olivucci M J Chem Theory Comput; 2012 Nov; 8(11):4069-80. PubMed ID: 26605574 [TBL] [Abstract][Full Text] [Related]
4. Conical Intersection and Potential Energy Surface Features of a Model Retinal Chromophore: Comparison of EOM-CC and Multireference Methods. Gozem S; Krylov AI; Olivucci M J Chem Theory Comput; 2013 Jan; 9(1):284-92. PubMed ID: 26589030 [TBL] [Abstract][Full Text] [Related]
5. Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model. Tuna D; Lefrancois D; Wolański Ł; Gozem S; Schapiro I; Andruniów T; Dreuw A; Olivucci M J Chem Theory Comput; 2015 Dec; 11(12):5758-81. PubMed ID: 26642989 [TBL] [Abstract][Full Text] [Related]
6. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz. Dupuy N; Bouaouli S; Mauri F; Sorella S; Casula M J Chem Phys; 2015 Jun; 142(21):214109. PubMed ID: 26049481 [TBL] [Abstract][Full Text] [Related]
7. The effect of protein environment on photoexcitation properties of retinal. Kaila VR; Send R; Sundholm D J Phys Chem B; 2012 Feb; 116(7):2249-58. PubMed ID: 22166007 [TBL] [Abstract][Full Text] [Related]
8. Properties of reactive oxygen species by quantum Monte Carlo. Zen A; Trout BL; Guidoni L J Chem Phys; 2014 Jul; 141(1):014305. PubMed ID: 25005287 [TBL] [Abstract][Full Text] [Related]
9. Ground State Geometries of Polyacetylene Chains from Many-Particle Quantum Mechanics. Barborini M; Guidoni L J Chem Theory Comput; 2015 Sep; 11(9):4109-18. PubMed ID: 26405437 [TBL] [Abstract][Full Text] [Related]
10. Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods. Gozem S; Melaccio F; Lindh R; Krylov AI; Granovsky AA; Angeli C; Olivucci M J Chem Theory Comput; 2013 Oct; 9(10):4495-506. PubMed ID: 26589167 [TBL] [Abstract][Full Text] [Related]
11. Quantum Monte Carlo study of the Retinal Minimal Model C5H6NH2+. Coccia E; Guidoni L J Comput Chem; 2012 Nov; 33(29):2332-9. PubMed ID: 22806608 [TBL] [Abstract][Full Text] [Related]
12. Excitation energies of retinal chromophores: critical role of the structural model. Valsson O; Angeli C; Filippi C Phys Chem Chem Phys; 2012 Aug; 14(31):11015-20. PubMed ID: 22782521 [TBL] [Abstract][Full Text] [Related]
13. Fate of the open-shell singlet ground state in the experimentally accessible acenes: A quantum Monte Carlo study. Dupuy N; Casula M J Chem Phys; 2018 Apr; 148(13):134112. PubMed ID: 29626884 [TBL] [Abstract][Full Text] [Related]
14. Toward Chemical Accuracy Using the Jastrow Correlated Antisymmetrized Geminal Power Raghav A; Maezono R; Hongo K; Sorella S; Nakano K J Chem Theory Comput; 2023 Apr; 19(8):2222-2229. PubMed ID: 37014742 [TBL] [Abstract][Full Text] [Related]
15. Assessing the accuracy of the Jastrow antisymmetrized geminal power in the H Genovese C; Meninno A; Sorella S J Chem Phys; 2019 Feb; 150(8):084102. PubMed ID: 30823772 [TBL] [Abstract][Full Text] [Related]
16. Nonadiabatic ab initio dynamics of a model protonated Schiff base of 9-cis retinal. Chung WC; Nanbu S; Ishida T J Phys Chem A; 2010 Aug; 114(32):8190-201. PubMed ID: 20666503 [TBL] [Abstract][Full Text] [Related]
17. TD-DFT calculations of the potential energy curves for the trans-cis photo-isomerization of protonated Schiff base of retinal. Tachikawa H; Iyama T J Photochem Photobiol B; 2004 Oct; 76(1-3):55-60. PubMed ID: 15488716 [TBL] [Abstract][Full Text] [Related]
18. Nonadiabatic ab initio dynamics of two models of Schiff base retinal. Ishida T; Nanbu S; Nakamura H J Phys Chem A; 2009 Apr; 113(16):4356-66. PubMed ID: 19298071 [TBL] [Abstract][Full Text] [Related]
19. The role of the beta-ionone ring in the photochemical reaction of rhodopsin. Send R; Sundholm D J Phys Chem A; 2007 Jan; 111(1):27-33. PubMed ID: 17201384 [TBL] [Abstract][Full Text] [Related]
20. Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection. Gozem S; Melaccio F; Valentini A; Filatov M; Huix-Rotllant M; Ferré N; Frutos LM; Angeli C; Krylov AI; Granovsky AA; Lindh R; Olivucci M J Chem Theory Comput; 2014 Aug; 10(8):3074-84. PubMed ID: 26588278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]