BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25821559)

  • 1. The adenovirus E1A oncoprotein N-terminal transcriptional repression domain enhances p300 autoacetylation and inhibits histone H3 Lys18 acetylation.
    Zhao LJ; Loewenstein PM; Green M
    Genes Cancer; 2015 Jan; 6(1-2):30-7. PubMed ID: 25821559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The adenoviral E1A N-terminal domain represses MYC transcription in human cancer cells by targeting both p300 and TRRAP and inhibiting MYC promoter acetylation of H3K18 and H4K16.
    Zhao LJ; Loewenstein PM; Green M
    Genes Cancer; 2016 Mar; 7(3-4):98-109. PubMed ID: 27382434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenovirus E1A Activation Domain Regulates H3 Acetylation Affecting Varied Steps in Transcription at Different Viral Promoters.
    Hsu E; Pennella MA; Zemke NR; Eng C; Berk AJ
    J Virol; 2018 Sep; 92(18):. PubMed ID: 29976669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenovirus small e1a alters global patterns of histone modification.
    Horwitz GA; Zhang K; McBrian MA; Grunstein M; Kurdistani SK; Berk AJ
    Science; 2008 Aug; 321(5892):1084-5. PubMed ID: 18719283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The adenovirus E1A N-terminal repression domain represses transcription from a chromatin template in vitro.
    Loewenstein PM; Wu SY; Chiang CM; Green M
    Virology; 2012 Jun; 428(1):70-5. PubMed ID: 22521914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transcription-repression domain of the adenovirus E1A oncoprotein targets p300 at the promoter.
    Green M; Panesar NK; Loewenstein PM
    Oncogene; 2008 Jul; 27(32):4446-55. PubMed ID: 18408753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive Inhibition of Lysine Acetyltransferase 2B by a Small Motif of the Adenoviral Oncoprotein E1A.
    Shi S; Liu K; Chen Y; Zhang S; Lin J; Gong C; Jin Q; Yang XJ; Chen R; Ji Z; Han A
    J Biol Chem; 2016 Jul; 291(27):14363-14372. PubMed ID: 27143356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of p300/CBP Acetylation of Nucleosomes by Bromodomain Ligand I-CBP112.
    Zucconi BE; Luef B; Xu W; Henry RA; Nodelman IM; Bowman GD; Andrews AJ; Cole PA
    Biochemistry; 2016 Jul; 55(27):3727-34. PubMed ID: 27332697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ING5 differentially regulates protein lysine acetylation and promotes p300 autoacetylation.
    Zhang T; Meng J; Liu X; Zhang X; Peng X; Cheng Z; Zhang F
    Oncotarget; 2018 Jan; 9(2):1617-1629. PubMed ID: 29416718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation.
    Thomas MC; Chiang CM
    Mol Cell; 2005 Jan; 17(2):251-64. PubMed ID: 15664194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoter-specific changes in initiation, elongation, and homeostasis of histone H3 acetylation during CBP/p300 inhibition.
    Hsu E; Zemke NR; Berk AJ
    Elife; 2021 Mar; 10():. PubMed ID: 33704060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between E1A binding to cellular proteins, c-myc activation and S-phase induction.
    Baluchamy S; Sankar N; Navaraj A; Moran E; Thimmapaya B
    Oncogene; 2007 Feb; 26(5):781-7. PubMed ID: 16862175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of p300, pocket proteins, and hTBP in E1A-mediated transcriptional regulation and inhibition of p53 transactivation activity.
    Sang N; Avantaggiati ML; Giordano A
    J Cell Biochem; 1997 Sep; 66(3):277-85. PubMed ID: 9257185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanism for coordinating chromatin modification and preinitiation complex assembly.
    Black JC; Choi JE; Lombardo SR; Carey M
    Mol Cell; 2006 Sep; 23(6):809-18. PubMed ID: 16973433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription factor TFIID is a direct functional target of the adenovirus E1A transcription-repression domain.
    Song CZ; Loewenstein PM; Toth K; Green M
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10330-3. PubMed ID: 7479778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligomers of human histone chaperone NPM1 alter p300/KAT3B folding to induce autoacetylation.
    Kaypee S; Sahadevan SA; Sudarshan D; Halder Sinha S; Patil S; Senapati P; Kodaganur GS; Mohiyuddin A; Dasgupta D; Kundu TK
    Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1729-1741. PubMed ID: 29746960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of p53-mediated transactivation and cell cycle arrest by E1A through its p300/CBP-interacting region.
    Somasundaram K; El-Deiry WS
    Oncogene; 1997 Mar; 14(9):1047-57. PubMed ID: 9070653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational and functional analysis of an essential subdomain of the adenovirus E1A N-terminal transcription repression domain.
    Loewenstein PM; Arackal S; Green M
    Virology; 2006 Aug; 351(2):312-21. PubMed ID: 16678877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulation of Sirtuin 2 (SIRT2) and histone H3K18 acetylation pathways associates with adverse prostate cancer outcomes.
    Damodaran S; Damaschke N; Gawdzik J; Yang B; Shi C; Allen GO; Huang W; Denu J; Jarrard D
    BMC Cancer; 2017 Dec; 17(1):874. PubMed ID: 29262808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autoacetylation induced specific structural changes in histone acetyltransferase domain of p300: probed by surface enhanced Raman spectroscopy.
    Arif M; Kumar GV; Narayana C; Kundu TK
    J Phys Chem B; 2007 Oct; 111(41):11877-9. PubMed ID: 17894486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.