These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 25821641)

  • 1. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer's disease.
    Rudy CC; Hunsberger HC; Weitzner DS; Reed MN
    Aging Dis; 2015 Mar; 6(2):131-48. PubMed ID: 25821641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dysfunction of NMDA receptors in Alzheimer's disease.
    Zhang Y; Li P; Feng J; Wu M
    Neurol Sci; 2016 Jul; 37(7):1039-47. PubMed ID: 26971324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysfunctional synapse in Alzheimer's disease - A focus on NMDA receptors.
    Mota SI; Ferreira IL; Rego AC
    Neuropharmacology; 2014 Jan; 76 Pt A():16-26. PubMed ID: 23973316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Aβ in Alzheimer's-related synaptic dysfunction.
    Zhang H; Jiang X; Ma L; Wei W; Li Z; Chang S; Wen J; Sun J; Li H
    Front Cell Dev Biol; 2022; 10():964075. PubMed ID: 36092715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Insights on Glutamatergic Dysfunction in Alzheimer's Disease and Therapeutic Implications.
    Pinky PD; Pfitzer JC; Senfeld J; Hong H; Bhattacharya S; Suppiramaniam V; Qureshi I; Reed MN
    Neuroscientist; 2023 Aug; 29(4):461-471. PubMed ID: 35073787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies.
    Kamat PK; Kalani A; Rai S; Swarnkar S; Tota S; Nath C; Tyagi N
    Mol Neurobiol; 2016 Jan; 53(1):648-661. PubMed ID: 25511446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices.
    Rammes G; Hasenjäger A; Sroka-Saidi K; Deussing JM; Parsons CG
    Neuropharmacology; 2011 May; 60(6):982-90. PubMed ID: 21310164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent effect of oligomeric amyloid-β (1-42)-induced hippocampal neurodegeneration in rat model of Alzheimer's disease.
    Karthick C; Nithiyanandan S; Essa MM; Guillemin GJ; Jayachandran SK; Anusuyadevi M
    Neurol Res; 2019 Feb; 41(2):139-150. PubMed ID: 30453864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic dysfunction in early phases of Alzheimer's Disease.
    Pelucchi S; Gardoni F; Di Luca M; Marcello E
    Handb Clin Neurol; 2022; 184():417-438. PubMed ID: 35034752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease.
    Torres AK; Jara C; Park-Kang HS; Polanco CM; Tapia D; Alarcón F; de la Peña A; Llanquinao J; Vargas-Mardones G; Indo JA; Inestrosa NC; Tapia-Rojas C
    J Alzheimers Dis; 2021; 84(4):1391-1414. PubMed ID: 34719499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake.
    Matos M; Augusto E; Machado NJ; dos Santos-Rodrigues A; Cunha RA; Agostinho P
    J Alzheimers Dis; 2012; 31(3):555-67. PubMed ID: 22647260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A familial Danish dementia rat shows impaired presynaptic and postsynaptic glutamatergic transmission.
    Yin T; Yao W; Norris KA; D'Adamio L
    J Biol Chem; 2021 Sep; 297(3):101089. PubMed ID: 34416235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential accumulation of amyloid-beta in presynaptic glutamatergic terminals (VGluT1 and VGluT2) in Alzheimer's disease cortex.
    Sokolow S; Luu SH; Nandy K; Miller CA; Vinters HV; Poon WW; Gylys KH
    Neurobiol Dis; 2012 Jan; 45(1):381-7. PubMed ID: 21914482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation.
    Song MS; Rauw G; Baker GB; Kar S
    Eur J Neurosci; 2008 Nov; 28(10):1989-2002. PubMed ID: 19046381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer's disease.
    Paula-Lima AC; Brito-Moreira J; Ferreira ST
    J Neurochem; 2013 Jul; 126(2):191-202. PubMed ID: 23668663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic changes in Alzheimer's disease and its models.
    Pozueta J; Lefort R; Shelanski ML
    Neuroscience; 2013 Oct; 251():51-65. PubMed ID: 22687952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades.
    Matos M; Augusto E; Oliveira CR; Agostinho P
    Neuroscience; 2008 Oct; 156(4):898-910. PubMed ID: 18790019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid-β oligomers interact with NMDA receptors containing GluN2B subunits and metabotropic glutamate receptor 1 in primary cortical neurons: Relevance to the synapse pathology of Alzheimer's disease.
    Taniguchi K; Yamamoto F; Amano A; Tamaoka A; Sanjo N; Yokota T; Kametani F; Araki W
    Neurosci Res; 2022 Jul; 180():90-98. PubMed ID: 35257837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postsynaptic Receptors for Amyloid-β Oligomers as Mediators of Neuronal Damage in Alzheimer's Disease.
    Dinamarca MC; Ríos JA; Inestrosa NC
    Front Physiol; 2012; 3():464. PubMed ID: 23267328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of pathological tau in synaptic dysfunction in Alzheimer's diseases.
    Wu M; Zhang M; Yin X; Chen K; Hu Z; Zhou Q; Cao X; Chen Z; Liu D
    Transl Neurodegener; 2021 Nov; 10(1):45. PubMed ID: 34753506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.