BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25821680)

  • 21. In Situ Enhanced Raman and Photoluminescence of Bio-Hybrid Ag/Polymer Nanoparticles by Localized Surface Plasmon for Highly Sensitive DNA Sensors.
    Kim S; Kim BH; Hong YK; Cui C; Choi J; Park DH; Song SH
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32164297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bright white-light emission from Ag/SiO2/CdS-ZnS core/shell/shell plasmon couplers.
    Liao C; Tang L; Gao X; Xu R; Zhang H; Yu Y; Lu C; Cui Y; Zhang J
    Nanoscale; 2015 Dec; 7(48):20607-13. PubMed ID: 26592756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Au@Cu2O core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance.
    Rai P; Khan R; Raj S; Majhi SM; Park KK; Yu YT; Lee IH; Sekhar PK
    Nanoscale; 2014 Jan; 6(1):581-8. PubMed ID: 24241354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Ag/Pt core-shell nanoparticles by UV-vis absorption, resonance light-scattering techniques.
    Chen L; Zhao W; Jiao Y; He X; Wang J; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):484-90. PubMed ID: 17329151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the iron oxide phases formed during the synthesis of core-shell Fe
    Petrov DA; Lin CR; Ivantsov RD; Ovchinnikov SG; Zharkov SM; Yurkin GY; Velikanov DA; Knyazev YV; Molokeev MS; Tseng YT; Lin ES; Edelman IS; Baskakov AO; Starchikov SS; Lyubutin IS
    Nanotechnology; 2020 Sep; 31(39):395703. PubMed ID: 32516763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation and Characterization of 3D Morphological Dependent Localized Surface Plasmon Resonance Spectra of Single Silver Nanoparticles Using Dark-field Optical Microscopy and Spectroscopy and AFM.
    Song Y; Nallathamby PD; Huang T; Elsayed-Ali HE; Xu XH
    J Phys Chem C Nanomater Interfaces; 2010 Jan; 114(1):74-81. PubMed ID: 20190865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interface interactions and enhanced room temperature ferromagnetism of Ag@CeO
    Chen SY; Tseng E; Lai YT; Lee W; Gloter A
    Nanoscale; 2017 Aug; 9(30):10764-10772. PubMed ID: 28717799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth-mode and interface structure of epitaxial ultrathin MgO/Ag(001) films.
    De Santis M; Langlais V; Schneider K; Torrelles X
    J Phys Condens Matter; 2021 May; 33(26):. PubMed ID: 33902021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Embedded layer of Ag nanoparticles prepared by a combined PECVD/PVD process producing SiOxCy-Ag nanocomposite thin films.
    Bedel L; Cayron C; Jouve M; Maury F
    Nanotechnology; 2012 Jan; 23(1):015603. PubMed ID: 22156142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive Multispectroscopic Analysis on the Interaction and Corona Formation of Human Serum Albumin with Gold/Silver Alloy Nanoparticles.
    Selva Sharma A; Ilanchelian M
    J Phys Chem B; 2015 Jul; 119(30):9461-76. PubMed ID: 26106942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilizer-free silver nanoparticles as efficient catalysts for electrochemical reduction of oxygen.
    Treshchalov A; Erikson H; Puust L; Tsarenko S; Saar R; Vanetsev A; Tammeveski K; Sildos I
    J Colloid Interface Sci; 2017 Apr; 491():358-366. PubMed ID: 28056445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas.
    Chen R; Nuhfer NT; Moussa L; Morris HR; Whitmore PM
    Nanotechnology; 2008 Nov; 19(45):455604. PubMed ID: 21832781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shape and structural motifs control of MgTi bimetallic nanoparticles using hydrogen and methane as trace impurities.
    Krishnan G; de Graaf S; Ten Brink GH; Verheijen MA; Kooi BJ; Palasantzas G
    Nanoscale; 2018 Jan; 10(3):1297-1307. PubMed ID: 29293254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved UV response of ZnO nanotubes by resonant coupling of anchored plasmonic silver nanoparticles.
    Biswas P; Cho SR; Kim JW; Baek SD; Myoung JM
    Nanotechnology; 2017 Jun; 28(22):225502. PubMed ID: 28402290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Uzayisenga V; Lin XD; Li LM; Anema JR; Yang ZL; Huang YF; Lin HX; Li SB; Li JF; Tian ZQ
    Langmuir; 2012 Jun; 28(24):9140-6. PubMed ID: 22506587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anisotropic effective medium properties from interacting Ag nanoparticles in silicon dioxide.
    Menegotto T; Horowitz F
    Appl Opt; 2014 May; 53(13):2853-9. PubMed ID: 24921871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers.
    Liu X; Li D; Sun X; Li Z; Song H; Jiang H; Chen Y
    Sci Rep; 2015 Jul; 5():12555. PubMed ID: 26218501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors.
    Yao Y; Ji F; Yin M; Ren X; Ma Q; Yan J; Liu SF
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18165-72. PubMed ID: 27348055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.