These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25821681)

  • 1. A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes.
    Strobl FG; Breyer D; Link P; Torrano AA; Bräuchle C; Schneider MF; Wixforth A
    Beilstein J Nanotechnol; 2015; 6():414-9. PubMed ID: 25821681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison.
    Kiebert F; Wege S; Massing J; König J; Cierpka C; Weser R; Schmidt H
    Lab Chip; 2017 Jun; 17(12):2104-2114. PubMed ID: 28540945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of gold nanoparticles toxicity towards human endothelial cells under static and flow conditions.
    Fede C; Fortunati I; Weber V; Rossetto N; Bertasi F; Petrelli L; Guidolin D; Signorini R; De Caro R; Albertin G; Ferrante C
    Microvasc Res; 2015 Jan; 97():147-55. PubMed ID: 25446009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic flow switching
    Jung JH; Destgeer G; Park J; Ahmed H; Park K; Sung HJ
    RSC Adv; 2018 Jan; 8(6):3206-3212. PubMed ID: 35541169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration.
    Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ
    Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable Acoustic Mixing of Fluids in Microchannels for the Fabrication of Therapeutic Nanoparticles.
    Westerhausen C; Schnitzler LG; Wendel D; Krzysztoń R; Lächelt U; Wagner E; Rädler JO; Wixforth A
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation.
    Gedge M; Hill M
    Lab Chip; 2012 Sep; 12(17):2998-3007. PubMed ID: 22842855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields.
    Kolesnik K; Hashemzadeh P; Peng D; Stamp MEM; Tong W; Rajagopal V; Miansari M; Collins DJ
    Phys Rev E; 2021 Oct; 104(4-2):045104. PubMed ID: 34781567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multichannel acoustically driven microfluidic chip to study particle-cell interactions.
    Wang XY; Fillafer C; Pichl C; Deinhammer S; Hofer-Warbinek R; Wirth M; Gabor F
    Biomicrofluidics; 2013; 7(4):44127. PubMed ID: 24404060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface acoustic wave diffraction driven mechanisms in microfluidic systems.
    Fakhfouri A; Devendran C; Albrecht T; Collins DJ; Winkler A; Schmidt H; Neild A
    Lab Chip; 2018 Jul; 18(15):2214-2224. PubMed ID: 29942943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain.
    Ni Z; Yin C; Xu G; Xie L; Huang J; Liu S; Tu J; Guo X; Zhang D
    Lab Chip; 2019 Aug; 19(16):2728-2740. PubMed ID: 31292597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-Acoustic-Wave (SAW)-Driven Device for Dynamic Cell Cultures.
    Greco G; Agostini M; Tonazzini I; Sallemi D; Barone S; Cecchini M
    Anal Chem; 2018 Jun; 90(12):7450-7457. PubMed ID: 29791795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface acoustic wave concentration of particle and bioparticle suspensions.
    Li H; Friend JR; Yeo LY
    Biomed Microdevices; 2007 Oct; 9(5):647-56. PubMed ID: 17530412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of biomimetic shear stress on cellular uptake and mechanism of polystyrene nanoparticles in various cancer cell lines.
    Kang T; Park C; Lee BJ
    Arch Pharm Res; 2016 Dec; 39(12):1663-1670. PubMed ID: 27761800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.