These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25821690)

  • 1. Hollow plasmonic antennas for broadband SERS spectroscopy.
    Messina GC; Malerba M; Zilio P; Miele E; Dipalo M; Ferrara L; De Angelis F
    Beilstein J Nanotechnol; 2015; 6():492-8. PubMed ID: 25821690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy.
    D'Andrea C; Bochterle J; Toma A; Huck C; Neubrech F; Messina E; Fazio B; Maragò OM; Di Fabrizio E; Lamy de La Chapelle M; Gucciardi PG; Pucci A
    ACS Nano; 2013 Apr; 7(4):3522-31. PubMed ID: 23530556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D plasmonic nanoantennas integrated with MEA biosensors.
    Dipalo M; Messina GC; Amin H; La Rocca R; Shalabaeva V; Simi A; Maccione A; Zilio P; Berdondini L; De Angelis F
    Nanoscale; 2015 Feb; 7(8):3703-11. PubMed ID: 25640283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography.
    Horák M; Bukvišová K; Švarc V; Jaskowiec J; Křápek V; Šikola T
    Sci Rep; 2018 Jun; 8(1):9640. PubMed ID: 29941880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas.
    Vietz C; Kaminska I; Sanz Paz M; Tinnefeld P; Acuna GP
    ACS Nano; 2017 May; 11(5):4969-4975. PubMed ID: 28445644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities.
    Chou Chau YF; Chou Chao CT; Rao JY; Chiang HP; Lim CM; Lim RC; Voo NY
    Nanoscale Res Lett; 2016 Dec; 11(1):411. PubMed ID: 27644237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Surface-Enhanced Spectroscopy With Perturbation Theory.
    Mueller NS; Reich S
    Front Chem; 2019; 7():470. PubMed ID: 31380339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incident angle-tuned, broadband, ultrahigh-sensitivity plasmonic antennas prepared from nanoparticles on imprinted mirrors.
    Yu CC; Tseng YC; Su PY; Lin KT; Shao CC; Chou SY; Yen YT; Chen HL
    Nanoscale; 2015 Mar; 7(9):3985-96. PubMed ID: 25567353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate Oxide Layer Thickness Optimization for a Dual-Width Plasmonic Grating for Surface-Enhanced Raman Spectroscopy (SERS) Biosensor Applications.
    Bauman SJ; Brawley ZT; Darweesh AA; Herzog JB
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28665308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoworms: Optical properties and simultaneous SERS and fluorescence enhancement.
    Khan HI; Khan GA; Mehmood S; Khan AD; Ahmed W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117111. PubMed ID: 31141771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions.
    El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP
    Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas.
    Kollmann H; Piao X; Esmann M; Becker SF; Hou D; Huynh C; Kautschor LO; Bösker G; Vieker H; Beyer A; Gölzhäuser A; Park N; Vogelgesang R; Silies M; Lienau C
    Nano Lett; 2014 Aug; 14(8):4778-84. PubMed ID: 25051422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic dimer antennas for surface enhanced Raman scattering.
    Höflich K; Becker M; Leuchs G; Christiansen S
    Nanotechnology; 2012 May; 23(18):185303. PubMed ID: 22498764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of electron dose on positive polymethyl methacrylate resist for nanolithography of gold bowtie nanoantennas.
    Campbell C; Casey A; Triplett G
    Heliyon; 2022 May; 8(5):e09475. PubMed ID: 35663762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tuning of the plasmon resonance of the metal nanoparticles in terms of the SERS effect.
    Starowicz Z; Wojnarowska-Nowak R; Ozga P; Sheregii EM
    Colloid Polym Sci; 2018; 296(6):1029-1037. PubMed ID: 29780199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas.
    Simon T; Li X; Martin J; Khlopin D; Stéphan O; Kociak M; Gérard D
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.
    Song J; Zhou W
    Nano Lett; 2018 Jul; 18(7):4409-4416. PubMed ID: 29923727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Out-of-Plane Plasmonic Antennas for Raman Analysis in Living Cells.
    La Rocca R; Messina GC; Dipalo M; Shalabaeva V; De Angelis F
    Small; 2015 Sep; 11(36):4632-7. PubMed ID: 26114644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of silver thickness on the enhancement of polymer based SERS substrates.
    Schneidewind H; Weber K; Zeisberger M; Hübner U; Dellith A; Cialla-May D; Mattheis R; Popp J
    Nanotechnology; 2014 Nov; 25(44):445203. PubMed ID: 25319270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.