BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25821933)

  • 1. Bending elasticity modulus of giant vesicles composed of aeropyrum pernix k1 archaeal lipid.
    Genova J; Ulrih NP; Kralj-Iglič V; Iglič A; Bivas I
    Life (Basel); 2015 Mar; 5(2):1101-10. PubMed ID: 25821933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Physicochemical and Biochemical Characterization of Archaeosomes from Polar Lipids of
    Kejžar J; Osojnik Črnivec IG; Poklar Ulrih N
    ACS Omega; 2023 Jan; 8(3):2861-2870. PubMed ID: 36713696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthetic machinery for C
    Yoshida R; Yoshimura T; Hemmi H
    Biochem Biophys Res Commun; 2018 Feb; 497(1):87-92. PubMed ID: 29427665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic properties and crystal structure of thermostable NAD(P)H-dependent carbonyl reductase from the hyperthermophilic archaeon Aeropyrum pernix K1.
    Fukuda Y; Sakuraba H; Araki T; Ohshima T; Yoneda K
    Enzyme Microb Technol; 2016 Sep; 91():17-25. PubMed ID: 27444325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel phosphoglycolipid archaetidyl(glucosyl)inositol with two sesterterpanyl chains from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1.
    Morii H; Yagi H; Akutsu H; Nomura N; Sako Y; Koga Y
    Biochim Biophys Acta; 1999 Jan; 1436(3):426-36. PubMed ID: 9989273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1.
    Mizohata E; Sakai H; Fusatomi E; Terada T; Murayama K; Shirouzu M; Yokoyama S
    J Mol Biol; 2005 Nov; 354(2):317-29. PubMed ID: 16214169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of an artificial biosynthetic pathway for hyperextended archaeal membrane lipids in the bacterium
    Yoshida R; Hemmi H
    Synth Biol (Oxf); 2020; 5(1):ysaa018. PubMed ID: 33263085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilayer membrane bending stiffness by tether formation from mixed PC-PS lipid vesicles.
    Song J; Waugh RE
    J Biomech Eng; 1990 Aug; 112(3):235-40. PubMed ID: 2214704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxicity and uptake of archaeosomes prepared from Aeropyrum pernix lipids.
    Napotnik TB; Valant J; Gmajner D; Passamonti S; Miklavčič D; Ulrih NP
    Hum Exp Toxicol; 2013 Sep; 32(9):950-9. PubMed ID: 23444336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of synonymous codon usage in Aeropyrum pernix K1 and other Crenarchaeota microorganisms.
    Jiang P; Sun X; Lu Z
    J Genet Genomics; 2007 Mar; 34(3):275-84. PubMed ID: 17498625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a whole set of tRNA molecules in an aerobic hyper-thermophilic Crenarchaeon, Aeropyrum pernix K1.
    Yamazaki S; Kikuchi H; Kawarabayasi Y
    DNA Res; 2005; 12(6):403-16. PubMed ID: 16769697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural properties of archaeal lipid bilayers: small-angle X-ray scattering and molecular dynamics simulation study.
    Polak A; Tarek M; Tomšič M; Valant J; Ulrih NP; Jamnik A; Kramar P; Miklavčič D
    Langmuir; 2014 Jul; 30(28):8308-15. PubMed ID: 25000416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local and nonlocal curvature elasticity in bilayer membranes by tether formation from lecithin vesicles.
    Waugh RE; Song J; Svetina S; Zeks B
    Biophys J; 1992 Apr; 61(4):974-82. PubMed ID: 1581506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of phenylalanine tRNA recognition sites by phenylalanyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1.
    Tsuchiya W; Kimura M; Hasegawa T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):367-8. PubMed ID: 18029739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of growth medium pH of Aeropyrum pernix on structural properties and fluidity of archaeosomes.
    Ota A; Gmajner D; Šentjurc M; Ulrih NP
    Archaea; 2012; 2012():285152. PubMed ID: 22778670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of model membranes studied from shape transformations of giant vesicles.
    Méléard P; Gerbeaud C; Bardusco P; Jeandaine N; Mitov MD; Fernandez-Puente L
    Biochimie; 1998; 80(5-6):401-13. PubMed ID: 9782381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization and preliminary X-ray diffraction studies of a protein disulfide oxidoreductase from Aeropyrum pernix K1.
    D'Ambrosio K; De Simone G; Pedone E; Rossi M; Bartolucci S; Pedone C
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Mar; 61(Pt 3):335-6. PubMed ID: 16511034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth behavior of giant vesicles using the electroformation method: effect of proteins on swelling and deformation.
    Shimanouchi T; Umakoshi H; Kuboi R
    J Colloid Interface Sci; 2013 Mar; 394():269-76. PubMed ID: 23273545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identify protein-coding genes in the genomes of Aeropyrum pernix K1 and Chlorobium tepidum TLS.
    Guo FB; Lin Y
    J Biomol Struct Dyn; 2009 Feb; 26(4):413-20. PubMed ID: 19108580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active site of Zn(2+)-dependent sn-glycerol-1-phosphate dehydrogenase from Aeropyrum pernix K1.
    Han JS; Ishikawa K
    Archaea; 2005 May; 1(5):311-7. PubMed ID: 15876564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.