These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25822135)

  • 1. Breakdown of Bose-Einstein distribution in photonic crystals.
    Lo PY; Xiong HN; Zhang WM
    Sci Rep; 2015 Mar; 5():9423. PubMed ID: 25822135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.
    Vasudev P; Jiang JH; John S
    Opt Express; 2016 Jun; 24(13):14010-35. PubMed ID: 27410564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Markovian dynamics of a microcavity coupled to a waveguide in photonic crystals.
    Wu MH; Lei CU; Zhang WM; Xiong HN
    Opt Express; 2010 Aug; 18(17):18407-18. PubMed ID: 20721235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bose-Einstein condensation of photons in an optical microcavity.
    Klaers J; Schmitt J; Vewinger F; Weitz M
    Nature; 2010 Nov; 468(7323):545-8. PubMed ID: 21107426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic architectures for equilibrium high-temperature Bose-Einstein condensation in dichalcogenide monolayers.
    Jiang JH; John S
    Sci Rep; 2014 Dec; 4():7432. PubMed ID: 25503586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequilibrium model of photon condensation.
    Kirton P; Keeling J
    Phys Rev Lett; 2013 Sep; 111(10):100404. PubMed ID: 25166637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping.
    Demokritov SO; Demidov VE; Dzyapko O; Melkov GA; Serga AA; Hillebrands B; Slavin AN
    Nature; 2006 Sep; 443(7110):430-3. PubMed ID: 17006509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning the Fuzzy Phases of Small Photonic Condensates.
    Rodrigues JD; Dhar HS; Walker BT; Smith JM; Oulton RF; Mintert F; Nyman RA
    Phys Rev Lett; 2021 Apr; 126(15):150602. PubMed ID: 33929251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-field photonic cooling through control of the chemical potential of photons.
    Zhu L; Fiorino A; Thompson D; Mittapally R; Meyhofer E; Reddy P
    Nature; 2019 Feb; 566(7743):239-244. PubMed ID: 30760913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic band gap via quantum coherence in vortex lattices of Bose-Einstein condensates.
    Müstecaplioğlu OE; Oktel MO
    Phys Rev Lett; 2005 Jun; 94(22):220404. PubMed ID: 16090371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium field theory description of the Bose-Einstein condensate.
    Barci DG; Fraga ES; Ramos RO
    Phys Rev Lett; 2000 Jul; 85(3):479-82. PubMed ID: 10991320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bose-Einstein condensation of the triplet states in the magnetic insulator TlCuCl3.
    Rüegg Ch; Cavadini N; Furrer A; Güdel HU; Krämer K; Mutka H; Wildes A; Habicht K; Vorderwisch P
    Nature; 2003 May; 423(6935):62-5. PubMed ID: 12721623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical physics of Bose-Einstein-condensed light in a dye microcavity.
    Klaers J; Schmitt J; Damm T; Vewinger F; Weitz M
    Phys Rev Lett; 2012 Apr; 108(16):160403. PubMed ID: 22680703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.
    Serga AA; Tiberkevich VS; Sandweg CW; Vasyuchka VI; Bozhko DA; Chumak AV; Neumann T; Obry B; Melkov GA; Slavin AN; Hillebrands B
    Nat Commun; 2014 Mar; 5():3452. PubMed ID: 24613901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous formation and nonequilibrium dynamics of a soliton-shaped Bose-Einstein condensate in a trap.
    Berman OL; Kezerashvili RY; Kolmakov GV; Pomirchi LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062901. PubMed ID: 26172766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The optimal structure of two dimensional photonic crystals with the large absolute band gap.
    Wang D; Yu Z; Liu Y; Lu P; Han L; Feng H; Guo X; Ye H
    Opt Express; 2011 Sep; 19(20):19346-53. PubMed ID: 21996875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polariton lasing vs. photon lasing in a semiconductor microcavity.
    Deng H; Weihs G; Snoke D; Bloch J; Yamamoto Y
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15318-23. PubMed ID: 14673089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-order spatial coherence measurements in a thermalized two-dimensional photonic quantum gas.
    Damm T; Dung D; Vewinger F; Weitz M; Schmitt J
    Nat Commun; 2017 Jul; 8(1):158. PubMed ID: 28761123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valley photonic crystals for control of spin and topology.
    Dong JW; Chen XD; Zhu H; Wang Y; Zhang X
    Nat Mater; 2017 Mar; 16(3):298-302. PubMed ID: 27893722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.
    Degirmenci E; Landais P
    Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.