These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 25822509)

  • 21. Drug Target Identification with Machine Learning: How to Choose Negative Examples.
    Najm M; Azencott CA; Playe B; Stoven V
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach.
    Xiao X; Min JL; Lin WZ; Liu Z; Cheng X; Chou KC
    J Biomol Struct Dyn; 2015; 33(10):2221-33. PubMed ID: 25513722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-scale identification of potential drug targets based on the topological features of human protein-protein interaction network.
    Li ZC; Zhong WQ; Liu ZQ; Huang MH; Xie Y; Dai Z; Zou XY
    Anal Chim Acta; 2015 Apr; 871():18-27. PubMed ID: 25847157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure.
    Shi H; Liu S; Chen J; Li X; Ma Q; Yu B
    Genomics; 2019 Dec; 111(6):1839-1852. PubMed ID: 30550813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding Membrane Protein Drug Targets in Computational Perspective.
    Gong J; Chen Y; Pu F; Sun P; He F; Zhang L; Li Y; Ma Z; Wang H
    Curr Drug Targets; 2019; 20(5):551-564. PubMed ID: 30516106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using random forests for assistance in the curation of G-protein coupled receptor databases.
    Shkurin A; Vellido A
    Biomed Eng Online; 2017 Aug; 16(Suppl 1):75. PubMed ID: 28830426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organizing bioactive compound discovery in target families.
    Nestler HP
    Methods Mol Biol; 2009; 575():1-19. PubMed ID: 19727609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions.
    Wang L; You ZH; Li LP; Yan X; Zhang W
    Sci Rep; 2020 Apr; 10(1):6641. PubMed ID: 32313024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis.
    Goh CS; Lan N; Douglas SM; Wu B; Echols N; Smith A; Milburn D; Montelione GT; Zhao H; Gerstein M
    J Mol Biol; 2004 Feb; 336(1):115-30. PubMed ID: 14741208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IFPTML Mapping of Drug Graphs with Protein and Chromosome Structural Networks vs. Pre-Clinical Assay Information for Discovery of Antimalarial Compounds.
    Quevedo-Tumailli V; Ortega-Tenezaca B; González-Díaz H
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supervised prediction of drug-target interactions using bipartite local models.
    Bleakley K; Yamanishi Y
    Bioinformatics; 2009 Sep; 25(18):2397-403. PubMed ID: 19605421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria.
    Chanumolu SK; Rout C; Chauhan RS
    PLoS One; 2012; 7(3):e32833. PubMed ID: 22431985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives.
    Nath A; Kumari P; Chaube R
    Methods Mol Biol; 2018; 1762():21-30. PubMed ID: 29594765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids.
    Mohammad TA; Nagarajaram HA
    J Bioinform Comput Biol; 2011 Aug; 9(4):489-502. PubMed ID: 21776605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting Drug-Target Interactions With Multi-Information Fusion.
    Peng L; Liao B; Zhu W; Li Z; Li K
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):561-572. PubMed ID: 26731781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting Drug-Target Interactions Based on Small Positive Samples.
    Hu P; Chan KCC; Hu Y
    Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms.
    Cavalli A; Spitaleri A; Saladino G; Gervasio FL
    Acc Chem Res; 2015 Feb; 48(2):277-85. PubMed ID: 25496113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes.
    Piazza I; Beaton N; Bruderer R; Knobloch T; Barbisan C; Chandat L; Sudau A; Siepe I; Rinner O; de Souza N; Picotti P; Reiter L
    Nat Commun; 2020 Aug; 11(1):4200. PubMed ID: 32826910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of machine learning algorithms to classify binary protein sequences as highly-designable or poorly-designable.
    Peto M; Kloczkowski A; Honavar V; Jernigan RL
    BMC Bioinformatics; 2008 Nov; 9():487. PubMed ID: 19014713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.