BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25822583)

  • 1. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.
    Pot MW; Faraj KA; Adawy A; van Enckevort WJ; van Moerkerk HT; Vlieg E; Daamen WF; van Kuppevelt TH
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8495-505. PubMed ID: 25822583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of methods for the construction of collagenous scaffolds with a radial pore structure for tissue engineering.
    Brouwer KM; van Rensch P; Harbers VE; Geutjes PJ; Koens MJ; Wijnen RM; Daamen WF; van Kuppevelt TH
    J Tissue Eng Regen Med; 2011 Jun; 5(6):501-4. PubMed ID: 21604385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic collagen scaffolds with anisotropic pore architecture.
    Davidenko N; Gibb T; Schuster C; Best SM; Campbell JJ; Watson CJ; Cameron RE
    Acta Biomater; 2012 Feb; 8(2):667-76. PubMed ID: 22005330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding anisotropy and architecture in ice-templated biopolymer scaffolds.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():141-7. PubMed ID: 24582233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cartilage tissue engineering using funnel-like collagen sponges prepared with embossing ice particulate templates.
    Lu H; Ko YG; Kawazoe N; Chen G
    Biomaterials; 2010 Aug; 31(22):5825-35. PubMed ID: 20452015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design.
    Arora A; Kothari A; Katti DS
    J Mech Behav Biomed Mater; 2015 Nov; 51():169-83. PubMed ID: 26256472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore size effect of collagen scaffolds on cartilage regeneration.
    Zhang Q; Lu H; Kawazoe N; Chen G
    Acta Biomater; 2014 May; 10(5):2005-13. PubMed ID: 24384122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic freeze-cast collagen scaffolds for tissue regeneration: How processing conditions affect structure and properties in the dry and fully hydrated states.
    Divakar P; Yin K; Wegst UGK
    J Mech Behav Biomed Mater; 2019 Feb; 90():350-364. PubMed ID: 30399564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds.
    Rowland CR; Colucci LA; Guilak F
    Biomaterials; 2016 Jun; 91():57-72. PubMed ID: 26999455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice Templating Soft Matter: Fundamental Principles and Fabrication Approaches to Tailor Pore Structure and Morphology and Their Biomedical Applications.
    Joukhdar H; Seifert A; Jüngst T; Groll J; Lord MS; Rnjak-Kovacina J
    Adv Mater; 2021 Aug; 33(34):e2100091. PubMed ID: 34236118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffolds for whole organ tissue engineering: Construction and in vitro evaluation of a seamless, spherical and hollow collagen bladder construct with appendices.
    Hoogenkamp HR; Pot MW; Hafmans TG; Tiemessen DM; Sun Y; Oosterwijk E; Feitz WF; Daamen WF; van Kuppevelt TH
    Acta Biomater; 2016 Oct; 43():112-121. PubMed ID: 27424084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex architectural control of ice-templated collagen scaffolds using a predictive model.
    Cyr JA; Husmann A; Best SM; Cameron RE
    Acta Biomater; 2022 Nov; 153():260-272. PubMed ID: 36155096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A design protocol for tailoring ice-templated scaffold structure.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    J R Soc Interface; 2014 Mar; 11(92):20130958. PubMed ID: 24402916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aligned Ice Templated Biomaterial Strategies for the Musculoskeletal System.
    Diaz F; Forsyth N; Boccaccini AR
    Adv Healthc Mater; 2023 Aug; 12(21):e2203205. PubMed ID: 37058583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes.
    Haugh MG; Murphy CM; O'Brien FJ
    Tissue Eng Part C Methods; 2010 Oct; 16(5):887-94. PubMed ID: 19903089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size.
    Mathews A; Colombus S; Krishnan VK; Krishnan LK
    J Tissue Eng Regen Med; 2012 Jun; 6(6):451-61. PubMed ID: 21800434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering.
    Francis NL; Hunger PM; Donius AE; Riblett BW; Zavaliangos A; Wegst UG; Wheatley MA
    J Biomed Mater Res A; 2013 Dec; 101(12):3493-503. PubMed ID: 23596011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of collagen scaffolds and their applications in tissue engineering.
    Kuberka M; Heschel I; Glasmacher B; Rau G
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():485-7. PubMed ID: 12451901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microengineered PEG hydrogels: 3D scaffolds for guided cell growth.
    Schulte VA; Alves DF; Dalton PP; Moeller M; Lensen MC; Mela P
    Macromol Biosci; 2013 May; 13(5):562-72. PubMed ID: 23420664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.