BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25822597)

  • 1. Dephosphorization of High-Phosphorus Iron Ore Using Different Sources of Aspergillus niger Strains.
    Xiao C; Wu X; Chi R
    Appl Biochem Biotechnol; 2015 May; 176(2):518-28. PubMed ID: 25822597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1.
    Xiao C; Zhang H; Fang Y; Chi R
    Appl Biochem Biotechnol; 2013 Jan; 169(1):123-33. PubMed ID: 23229476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of indigenous sulfur-oxidizing bacteria from municipal wastewater to selectively bioleach phosphorus from high-phosphorus iron ore: effect of particle size.
    Shen S; Rao R; Wang J
    Environ Technol; 2013; 34(1-4):173-80. PubMed ID: 23530328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beneficiation of iron ore slime using Aspergillus niger and Bacillus circulans.
    Pradhan N; Das B; Gahan CS; Kar RN; Sukla LB
    Bioresour Technol; 2006 Oct; 97(15):1876-9. PubMed ID: 16531043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimisation of different physical parameters for bioleaching of phosphate by Aspergillus niger from Indian rock phosphate.
    Ghosh R; Banik AK
    Indian J Exp Biol; 1998 Jul; 36(7):688-92. PubMed ID: 9782785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizations of particle size and pulp density for solubilization of rock phosphate by a microbial consortium from activated sludge.
    Xiao C; Wu X; Liu T; Xu G; Chi R
    Prep Biochem Biotechnol; 2017 Jul; 47(6):562-569. PubMed ID: 28032819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger.
    Li Z; Bai T; Dai L; Wang F; Tao J; Meng S; Hu Y; Wang S; Hu S
    Sci Rep; 2016 Apr; 6():25313. PubMed ID: 27126606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment.
    Gujar PD; Bhavsar KP; Khire JM
    J Sci Food Agric; 2013 Jul; 93(9):2242-7. PubMed ID: 23355258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosolubilization of rock phosphate by three stress-tolerant fungal strains.
    Xiao C; Chi R; Li X; Xia M; Xia Z
    Appl Biochem Biotechnol; 2011 Sep; 165(2):719-27. PubMed ID: 21625871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger.
    Magyarosy A; Laidlaw RD; Kilaas R; Echer C; Clark DS; Keasling JD
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):382-8. PubMed ID: 12111174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption potency of Aspergillus niger for removal of chromium (VI).
    Srivastava S; Thakur IS
    Curr Microbiol; 2006 Sep; 53(3):232-7. PubMed ID: 16874547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2.
    Li X; Luo L; Yang J; Li B; Yuan H
    Appl Biochem Biotechnol; 2015 Mar; 175(5):2755-68. PubMed ID: 25561059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubilization of Morocco phosphorite by Aspergillus niger.
    Bojinova D; Velkova R; Ivanova R
    Bioresour Technol; 2008 Oct; 99(15):7348-53. PubMed ID: 18468889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid-base properties and surface complexation modeling of phosphate anion adsorption by wasted low grade iron ore with high phosphorus.
    Yuan X; Bai C; Xia W; An J
    J Colloid Interface Sci; 2014 Aug; 428():208-13. PubMed ID: 24910055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger.
    Mulligan CN; Kamali M; Gibbs BF
    J Hazard Mater; 2004 Jul; 110(1-3):77-84. PubMed ID: 15177728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Aspergillus aculateus strain was capable of producing agriculturally useful nanoparticles via bioremediation of iron ore tailings.
    Bedi A; Singh BR; Deshmukh SK; Adholeya A; Barrow CJ
    J Environ Manage; 2018 Jun; 215():100-107. PubMed ID: 29567549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome mining and functional genomics for siderophore production in Aspergillus niger.
    Franken AC; Lechner BE; Werner ER; Haas H; Lokman BC; Ram AF; van den Hondel CA; de Weert S; Punt PJ
    Brief Funct Genomics; 2014 Nov; 13(6):482-92. PubMed ID: 25062661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Community Structure of Activated Sludge for Biosolubilization of Two Different Rock Phosphates.
    Xiao C; Wu X; Liu T; Xu G; Chi R
    Appl Biochem Biotechnol; 2017 Jun; 182(2):742-754. PubMed ID: 27987186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium immobilization in aqueous solution by Aspergillus niger and geological fluorapatite.
    Okolie CU; Chen H; Zhao Y; Tian D; Zhang L; Su M; Jiang Z; Li Z; Li H
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7647-7656. PubMed ID: 31889269
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Wang L; Guan H; Hu J; Feng Y; Li X; Yusef KK; Gao H; Tian D
    J Agric Food Chem; 2022 Sep; 70(35):10738-10746. PubMed ID: 36027054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.