BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25822726)

  • 21. Modeling biosorption of Cr(VI) onto Ulva compressa L. from aqueous solutions.
    Aid A; Amokrane S; Nibou D; Mekatel E; Trari M; Hulea V
    Water Sci Technol; 2018 Jan; 77(1-2):60-69. PubMed ID: 29339604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of different isotherm models, kinetic, thermodynamic, and copper biosorption efficiency of Lobaria pulmonaria (L.) Hoffm.
    Kiliç Z; Atakol O; Aras S; Cansaran-Duman D; Celikkol P; Emregul E
    J Air Waste Manag Assoc; 2014 Jan; 64(1):115-23. PubMed ID: 24620409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste.
    Kausar A; Bhatti HN; MacKinnon G
    Colloids Surf B Biointerfaces; 2013 Nov; 111():124-33. PubMed ID: 23787279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Depletion of Cr(VI) from aqueous solution by heat dried biomass of a newly isolated fungus Arthrinium malaysianum: A mechanistic approach.
    Majumder R; Sheikh L; Naskar A; Vineeta ; Mukherjee M; Tripathy S
    Sci Rep; 2017 Sep; 7(1):11254. PubMed ID: 28900147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr(VI)-contaminated wastewater.
    Chen GQ; Zhang WJ; Zeng GM; Huang JH; Wang L; Shen GL
    J Hazard Mater; 2011 Feb; 186(2-3):2138-43. PubMed ID: 21247693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosorption Potential of Bacillus salmalaya Strain 139SI for Removal of Cr(VI) from Aqueous Solution.
    Dadrasnia A; Chuan Wei KS; Shahsavari N; Azirun MS; Ismail S
    Int J Environ Res Public Health; 2015 Dec; 12(12):15321-38. PubMed ID: 26633454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass.
    Gupta VK; Rastogi A
    J Hazard Mater; 2008 Jun; 154(1-3):347-54. PubMed ID: 18053641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological removal of Cr (VI) by bacterial isolates obtained from metal contaminated sites.
    Kaushik S; Juwarkar A; Malik A; Satya S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Mar; 43(4):419-23. PubMed ID: 18273748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by
    Göçenoğlu Sarıkaya A
    Environ Technol; 2021 Jan; 42(1):72-80. PubMed ID: 31107633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosorption of Cr(VI) from aqueous solution by chemically modified potato starch: equilibrium and kinetic studies.
    Pillai SS; Mullassery MD; Fernandez NB; Girija N; Geetha P; Koshy M
    Ecotoxicol Environ Saf; 2013 Jun; 92():199-205. PubMed ID: 23499185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-enzymatic reduction of Cr (VI) and it's effective biosorption using heat-inactivated biomass: A fermentation waste material.
    Antony GS; Manna A; Baskaran S; Puhazhendi P; Ramchary A; Niraikulam A; Ramudu KN
    J Hazard Mater; 2020 Jun; 392():122257. PubMed ID: 32109791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of Ni(II), Zn(II) and Cr(VI) from aqueous solution by Alternanthera philoxeroides biomass.
    Wang XS; Qin Y
    J Hazard Mater; 2006 Dec; 138(3):582-8. PubMed ID: 16839675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of Cr(VI) biosorption onto
    Mondal NK; Samanta A; Dutta S; Chattoraj S
    J Genet Eng Biotechnol; 2017 Jun; 15(1):151-160. PubMed ID: 30647651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosorption of Cr(VI) from water using biomass of Aeromonas hydrophila: central composite design for optimization of process variables.
    Ranjan D; Srivastava P; Talat M; Hasan SH
    Appl Biochem Biotechnol; 2009 Sep; 158(3):524-39. PubMed ID: 19031053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye.
    Akar T; Tosun I; Kaynak Z; Kavas E; Incirkus G; Akar ST
    J Hazard Mater; 2009 Nov; 171(1-3):865-71. PubMed ID: 19631464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of equilibrium and kinetics of Cr(VI) adsorption by dried Bacillus cereus using response surface methodology.
    Yang K; Zhang J; Yang T; Wang H
    Water Sci Technol; 2016; 73(3):617-27. PubMed ID: 26877045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosorption of Cr (VI) with Trichoderma viride immobilized fungal biomass and cell free Ca-alginate beads.
    Bishnoi NR; Kumar R; Bishnoi K
    Indian J Exp Biol; 2007 Jul; 45(7):657-64. PubMed ID: 17821865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.
    Deng S; Ting YP
    Environ Sci Technol; 2005 Nov; 39(21):8490-6. PubMed ID: 16294892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes.
    Brasil JL; Ev RR; Milcharek CD; Martins LC; Pavan FA; dos Santos AA; Dias SL; Dupont J; Zapata Noreña CP; Lima EC
    J Hazard Mater; 2006 May; 133(1-3):143-53. PubMed ID: 16297543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spontaneous Cr(VI) and Cd(II) biosorption potential of native pinnae tissue of Pteris vittata L., a tropical invasive pteridophyte.
    Prabhu SG; Srinikethan G; Hegde S
    Int J Phytoremediation; 2019; 21(4):380-390. PubMed ID: 30740992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.