BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25822757)

  • 1. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.
    Ghadirzadeh A; Passoni L; Grancini G; Terraneo G; Li Bassi A; Petrozza A; Di Fonzo F
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7451-5. PubMed ID: 25822757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.
    Passoni L; Ghods F; Docampo P; Abrusci A; Martí-Rujas J; Ghidelli M; Divitini G; Ducati C; Binda M; Guarnera S; Li Bassi A; Casari CS; Snaith HJ; Petrozza A; Di Fonzo F
    ACS Nano; 2013 Nov; 7(11):10023-31. PubMed ID: 24180577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperbranched TiO
    Mezzetti A; Balandeh M; Luo J; Bellani S; Tacca A; Divitini G; Cheng C; Ducati C; Meda L; Fan H; Di Fonzo F
    Nanotechnology; 2018 Aug; 29(33):335404. PubMed ID: 29808827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of Interfacial Modifiers in Inorganic Titania/Organic Poly(3-hexylthiophene) Heterojunction Hybrid Solar Cells.
    Pirashanthan A; Kajana T; Velauthapillai D; Shivatharsiny Y; Bentouba S; Ravirajan P
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsphere assembly of TiO2 mesoporous nanosheets with highly exposed (101) facets and application in a light-trapping quasi-solid-state dye-sensitized solar cell.
    Tao X; Ruan P; Zhang X; Sun H; Zhou X
    Nanoscale; 2015 Feb; 7(8):3539-47. PubMed ID: 25631573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array.
    Liao WP; Wu JJ
    J Phys Chem Lett; 2013 Jun; 4(11):1983-8. PubMed ID: 26283138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells.
    Poudel P; Qiao Q
    Nanoscale; 2012 Apr; 4(9):2826-38. PubMed ID: 22447033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells.
    Chetia TR; Barpuzary D; Qureshi M
    Phys Chem Chem Phys; 2014 May; 16(20):9625-33. PubMed ID: 24730023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell.
    Kumar PN; Deepa M; Srivastava AK
    Phys Chem Chem Phys; 2015 Apr; 17(15):10040-52. PubMed ID: 25785507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nanostructure geometry on nanoimprinted polymer photovoltaics.
    Yang Y; Mielczarek K; Aryal M; Zakhidov A; Hu W
    Nanoscale; 2014 Jul; 6(13):7576-84. PubMed ID: 24890562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-tuned self-organization of a bulk heterojunction hybrid solar cell with enhanced performance.
    Liao HC; Tsao CS; Lin TH; Jao MH; Chuang CM; Chang SY; Huang YC; Shao YT; Chen CY; Su CJ; Jeng US; Chen YF; Su WF
    ACS Nano; 2012 Feb; 6(2):1657-66. PubMed ID: 22292963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titania nanobundle networks as dye-sensitized solar cell photoanodes.
    Dong C; Xiang W; Huang F; Fu D; Huang W; Bach U; Cheng YB; Li X; Spiccia L
    Nanoscale; 2014 Apr; 6(7):3704-11. PubMed ID: 24567234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell nanophosphor architecture: toward efficient energy transport in inorganic/organic hybrid solar cells.
    Li Q; Yuan Y; Chen Z; Jin X; Wei TH; Li Y; Qin Y; Sun W
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12798-807. PubMed ID: 24967836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous carbon-TiO₂ beads with nanotextured surfaces as photoanodes in dye-sensitized solar cells.
    Quan LN; Jang YH; Jang YJ; Kim J; Lee W; Moon JH; Kim DH
    ChemSusChem; 2014 Sep; 7(9):2590-6. PubMed ID: 25098396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and properties of nano-confined poly(3-hexylthiophene) in nano-array/polymer hybrid ordered-bulk heterojunction solar cells.
    Foong TR; Chan KL; Hu X
    Nanoscale; 2012 Jan; 4(2):478-85. PubMed ID: 22095025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitaxial 1D electron transport layers for high-performance perovskite solar cells.
    Han GS; Chung HS; Kim DH; Kim BJ; Lee JW; Park NG; Cho IS; Lee JK; Lee S; Jung HS
    Nanoscale; 2015 Oct; 7(37):15284-90. PubMed ID: 26324759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.
    Kumar N; Dutta V
    J Colloid Interface Sci; 2014 Nov; 434():181-7. PubMed ID: 25203909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of an Inorganic Interlayer on Exciton Separation in Hybrid Solar Cells.
    Armstrong CL; Price MB; Muñoz-Rojas D; Davis NJ; Abdi-Jalebi M; Friend RH; Greenham NC; MacManus-Driscoll JL; Böhm ML; Musselman KP
    ACS Nano; 2015 Dec; 9(12):11863-71. PubMed ID: 26548399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells.
    Lin YY; Chu TH; Li SS; Chuang CH; Chang CH; Su WF; Chang CP; Chu MW; Chen CW
    J Am Chem Soc; 2009 Mar; 131(10):3644-9. PubMed ID: 19215126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells.
    Wu WQ; Xu YF; Rao HS; Su CY; Kuang DB
    J Am Chem Soc; 2014 Apr; 136(17):6437-45. PubMed ID: 24725076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.