BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25822842)

  • 1. Fast formation of supergene Mn oxides/hydroxides under acidic conditions in the oxic/anoxic transition zone of a shallow aquifer.
    Schäffner F; Merten D; Pollok K; Wagner S; Knoblauch S; Langenhorst F; Büchel G
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19362-75. PubMed ID: 25822842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metals in petroleum-contaminated surface soils in Serbia.
    Grujić S; Ristić M; Lausević M
    Ann Chim; 2004 Dec; 94(12):961-70. PubMed ID: 15689032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogenic Mn oxides for effective adsorption of Cd from aquatic environment.
    Meng YT; Zheng YM; Zhang LM; He JZ
    Environ Pollut; 2009; 157(8-9):2577-83. PubMed ID: 19345460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals.
    Feng XH; Zhai LM; Tan WF; Liu F; He JZ
    Environ Pollut; 2007 May; 147(2):366-73. PubMed ID: 16996175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential risk assessment in stream sediments, soils and waters after remediation in an abandoned W>Sn mine (NE Portugal).
    Antunes IM; Gomes ME; Neiva AM; Carvalho PC; Santos AC
    Ecotoxicol Environ Saf; 2016 Nov; 133():135-45. PubMed ID: 27448230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage.
    Torres E; Ayora C; Canovas CR; García-Robledo E; Galván L; Sarmiento AM
    Sci Total Environ; 2013 Sep; 461-462():416-29. PubMed ID: 23747557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recrystallization and stability of Zn and Pb minerals on their migration to groundwater in soils affected by Acid Mine Drainage under CO2 rich atmospheric waters.
    Goienaga N; Carrero JA; Zuazagoitia D; Baceta JI; Murelaga X; Fernández LA; Madariaga JM
    Chemosphere; 2015 Jan; 119():727-733. PubMed ID: 25180824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek, Globe mining district, Arizona.
    Kay JT; Conklin MH; Fuller CC; O'Day PA
    Environ Sci Technol; 2001 Dec; 35(24):4719-25. PubMed ID: 11775144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time.
    Vítková M; Rákosová S; Michálková Z; Komárek M
    J Environ Manage; 2017 Jan; 186(Pt 2):268-276. PubMed ID: 27292579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metals other than uranium affected microbial community composition in a historical uranium-mining site.
    Sitte J; Löffler S; Burkhardt EM; Goldfarb KC; Büchel G; Hazen TC; Küsel K
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19326-41. PubMed ID: 26122566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine.
    Akob DM; Bohu T; Beyer A; Schäffner F; Händel M; Johnson CA; Merten D; Büchel G; Totsche KU; Küsel K
    Appl Environ Microbiol; 2014 Aug; 80(16):5086-97. PubMed ID: 24928873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The combined effect of abandoned mines and agriculture on groundwater chemistry.
    Pauwels H; Pettenati M; Greffié C
    J Contam Hydrol; 2010 Jun; 115(1-4):64-78. PubMed ID: 20466452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer.
    Cánovas CR; Macías F; Pérez-López R
    J Contam Hydrol; 2016 May; 188():29-43. PubMed ID: 26972101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal).
    Candeias C; Ávila PF; Ferreira da Silva E; Teixeira JP
    Environ Monit Assess; 2015 Mar; 187(3):135. PubMed ID: 25702148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current approaches for mitigating acid mine drainage.
    Sahoo PK; Kim K; Equeenuddin SM; Powell MA
    Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural attenuation processes applying to antimony: a study in the abandoned antimony mine in Goesdorf, Luxembourg.
    Filella M; Philippo S; Belzile N; Chen Y; Quentel F
    Sci Total Environ; 2009 Dec; 407(24):6205-16. PubMed ID: 19775729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.
    Haferburg G; Merten D; Büchel G; Kothe E
    J Basic Microbiol; 2007 Dec; 47(6):474-84. PubMed ID: 18072248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abandoned PbZn mining wastes and their mobility as proxy to toxicity: A review.
    Gutiérrez M; Mickus K; Camacho LM
    Sci Total Environ; 2016 Sep; 565():392-400. PubMed ID: 27179321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.
    Shaheen SM; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):253-260. PubMed ID: 27499501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of metal pollution in a former mining area in the NW Tunisia: spatial distribution and fraction of Cd, Pb and Zn in soil.
    Othmani MA; Souissi F; Durães N; Abdelkader M; da Silva EF
    Environ Monit Assess; 2015 Aug; 187(8):523. PubMed ID: 26205279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.