BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25822982)

  • 1. Nonaqueous System of Iron-Based Ionic Liquid and DMF for the Oxidation of Hydrogen Sulfide and Regeneration by Electrolysis.
    Guo Z; Zhang T; Liu T; Du J; Jia B; Gao S; Yu J
    Environ Sci Technol; 2015 May; 49(9):5697-703. PubMed ID: 25822982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H2S(g) removal using a modified, low-ph liquid redox sulfur recovery (LRSR) process with electrochemical regeneration of the Fe catalyst couple.
    Gendel Y; Levi N; Lahav O
    Environ Sci Technol; 2009 Nov; 43(21):8315-9. PubMed ID: 19924962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of aqueous hydrogen sulfide by granular ferric hydroxide-kinetics, capacity and reuse.
    Sun J; Zhou J; Shang C; Kikkert GA
    Chemosphere; 2014 Dec; 117():324-9. PubMed ID: 25150683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.
    Kreitman GY; Danilewicz JC; Jeffery DW; Elias RJ
    J Agric Food Chem; 2016 May; 64(20):4105-13. PubMed ID: 27133088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective catalytic oxidation of H₂S over iron oxide supported on alumina-intercalated Laponite clay catalysts.
    Zhang X; Dou G; Wang Z; Li L; Wang Y; Wang H; Hao Z
    J Hazard Mater; 2013 Sep; 260():104-11. PubMed ID: 23747468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen Sulfide Splitting into Hydrogen and Sulfur through Off-Field Electrocatalysis.
    Wang Z; Wang QN; Ma W; Liu T; Zhang W; Zhou P; Li M; Liu X; Chang Q; Zheng H; Chang B; Li C
    Environ Sci Technol; 2024 Jun; 58(24):10515-10523. PubMed ID: 38622088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron(III) bound by hydrosulfide anion ligands: NO-promoted stabilization of the [Fe(III)-SH] motif.
    Tsou CC; Chiu WC; Ke CH; Tsai JC; Wang YM; Chiang MH; Liaw WF
    J Am Chem Soc; 2014 Jul; 136(26):9424-33. PubMed ID: 24917476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetically-mediated regeneration and reuse of core-shell Fe
    Sun J; Yang J; Liu Y; Guo M; Wen Q; Sun W; Yao J; Li Y; Jiang F
    Water Res; 2019 Jun; 157():621-629. PubMed ID: 31004978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption-oxidation of hydrogen sulfide on Fe/walnut-shell activated carbon surface modified by NH
    Ning P; Liu S; Wang C; Li K; Sun X; Tang L; Liu G
    J Environ Sci (China); 2018 Feb; 64():216-226. PubMed ID: 29478642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial iron reduction enhances in-situ control of biogenic hydrogen sulfide by FeOOH granules in sediments of polluted urban waters.
    Sun J; Wei L; Yin R; Jiang F; Shang C
    Water Res; 2020 Mar; 171():115453. PubMed ID: 31918385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions of Superoxide with Iron Porphyrins in the Bulk and the Near-Surface Region of Ionic Liquids.
    Dees A; Jux N; Tröppner O; Dürr K; Lippert R; Schmid M; Küstner B; Schlücker S; Steinrück HP; Gottfried JM; Ivanović-Burmazović I
    Inorg Chem; 2015 Jul; 54(14):6862-72. PubMed ID: 26158848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.
    Sun M; Song W; Zhai LF; Cui YZ
    J Hazard Mater; 2013 Dec; 263 Pt 2():643-9. PubMed ID: 24220197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen Sulfide and Ionic Liquids: Absorption, Separation, and Oxidation.
    Chiappe C; Pomelli CS
    Top Curr Chem (Cham); 2017 Jun; 375(3):52. PubMed ID: 28447285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe(III) - Sulfide interaction in globins: Characterization and quest for a putative Fe(IV)-sulfide species.
    Mot AC; Bischin C; Damian G; Attia AAA; Gal E; Dina N; Leopold N; Silaghi-Dumitrescu R
    J Inorg Biochem; 2018 Feb; 179():32-39. PubMed ID: 29156293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel square pyramidal iron(III) complexes of linear tetradentate bis(phenolate) ligands as structural and reactive models for intradiol-cleaving 3,4-PCD enzymes: Quinone formation vs. intradiol cleavage.
    Mayilmurugan R; Sankaralingam M; Suresh E; Palaniandavar M
    Dalton Trans; 2010 Oct; 39(40):9611-25. PubMed ID: 20835480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological regeneration of manganese (IV) and iron (III) for anaerobic metal oxide-mediated removal of pharmaceuticals from water.
    Liu W; Langenhoff AAM; Sutton NB; Rijnaarts HHM
    Chemosphere; 2018 Oct; 208():122-130. PubMed ID: 29864703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS).
    Du Y; Liu G; Yan Y; Huang D; Luo W; Martinkova M; Man P; Shimizu T
    Biometals; 2013 Oct; 26(5):839-52. PubMed ID: 23736976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient recovery of dissolved Fe(II) from near neutral pH Fenton via microbial electrolysis.
    Wang G; Jiang Y; Tang K; Zhang Y; Andersen HR
    J Hazard Mater; 2022 Aug; 436():129196. PubMed ID: 35739726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water electrolysis: an excellent approach for the removal of water from ionic liquids.
    Islam MM; Okajima T; Kojima S; Ohsaka T
    Chem Commun (Camb); 2008 Nov; (42):5330-2. PubMed ID: 18985200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, structure, spectra and reactivity of iron(III) complexes of facially coordinating and sterically hindering 3N ligands as models for catechol dioxygenases.
    Sundaravel K; Dhanalakshmi T; Suresh E; Palaniandavar M
    Dalton Trans; 2008 Dec; (48):7012-25. PubMed ID: 19050788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.