These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 25823001)
1. Fatigue performance of medical Ti6Al4V alloy after mechanical surface treatments. Sonntag R; Reinders J; Gibmeier J; Kretzer JP PLoS One; 2015; 10(3):e0121963. PubMed ID: 25823001 [TBL] [Abstract][Full Text] [Related]
2. Abrasive waterjet peening: a new method of surface preparation for metal orthopedic implants. Arola DD; McCain ML J Biomed Mater Res; 2000 Sep; 53(5):536-46. PubMed ID: 10984702 [TBL] [Abstract][Full Text] [Related]
3. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy. Tang J; Liu D; Zhang X; Du D; Yu S Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773345 [TBL] [Abstract][Full Text] [Related]
4. Effect of Various Peening Methods on the Fatigue Properties of Titanium Alloy Ti6Al4V Manufactured by Direct Metal Laser Sintering and Electron Beam Melting. Soyama H; Takeo F Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408590 [TBL] [Abstract][Full Text] [Related]
5. Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31. Bagherifard S; Hickey DJ; Fintová S; Pastorek F; Fernandez-Pariente I; Bandini M; Webster TJ; Guagliano M Acta Biomater; 2018 Jan; 66():93-108. PubMed ID: 29183850 [TBL] [Abstract][Full Text] [Related]
6. Deep rolling of titanium rods for application in modular total hip arthroplasty. Schuh A; Zeller C; Holzwarth U; Kachler W; Wilcke G; Zeiler G; Eigenmann B; Bigoney J J Biomed Mater Res B Appl Biomater; 2007 May; 81(2):330-5. PubMed ID: 16969829 [TBL] [Abstract][Full Text] [Related]
7. On the fatigue behavior of medical Ti6Al4V roughened by grit blasting and abrasiveless waterjet peening. Lieblich M; Barriuso S; Ibáñez J; Ruiz-de-Lara L; Díaz M; Ocaña JL; Alberdi A; González-Carrasco JL J Mech Behav Biomed Mater; 2016 Oct; 63():390-398. PubMed ID: 27454525 [TBL] [Abstract][Full Text] [Related]
8. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties. Lieblich M; Barriuso S; Multigner M; González-Doncel G; González-Carrasco JL J Mech Behav Biomed Mater; 2016 Feb; 54():173-84. PubMed ID: 26458115 [TBL] [Abstract][Full Text] [Related]
9. Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement. Khandaker M; Riahinezhad S; Sultana F; Vaughan MB; Knight J; Morris TL Int J Nanomedicine; 2016; 11():585-94. PubMed ID: 26893563 [TBL] [Abstract][Full Text] [Related]
10. Effect of Residual Stress on S-N Curves and Fracture Morphology of Ti6Al4V Titanium Alloy after Laser Shock Peening without Protective Coating. Pan X; Li X; Zhou L; Feng X; Luo S; He W Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752327 [TBL] [Abstract][Full Text] [Related]
11. Fatigue behavior of Ti6Al4V and 316 LVM blasted with ceramic particles of interest for medical devices. Barriuso S; Chao J; Jiménez JA; García S; González-Carrasco JL J Mech Behav Biomed Mater; 2014 Feb; 30():30-40. PubMed ID: 24216310 [TBL] [Abstract][Full Text] [Related]
12. Frequency effect in fretting wear of Co-28Cr-6Mo versus Ti-6Al-4V implant alloys. Schaaff P; Dalmiglio M; Holzwarth U J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):79-88. PubMed ID: 16211570 [TBL] [Abstract][Full Text] [Related]
13. Effect of Shot Peening on the Mechanical Properties and Cytotoxicity Behaviour of Titanium Implants Produced by 3D Printing Technology. Żebrowski R; Walczak M; Korga A; Iwan M; Szala M J Healthc Eng; 2019; 2019():8169538. PubMed ID: 31934324 [TBL] [Abstract][Full Text] [Related]
14. Effects of Shot Peening and Electropolishing Treatment on the Properties of Additively and Conventionally Manufactured Ti6Al4V Alloy: A Review. Okuniewski W; Walczak M; Szala M Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399186 [TBL] [Abstract][Full Text] [Related]
15. Mechanical biocompatibilities of titanium alloys for biomedical applications. Niinomi M J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769 [TBL] [Abstract][Full Text] [Related]
16. The effect of sandblasting treatment on endurance properties of titanium alloy hip prostheses. Baleani M; Viceconti M; Toni A Artif Organs; 2000 Apr; 24(4):296-9. PubMed ID: 10816203 [TBL] [Abstract][Full Text] [Related]
17. Wear induced by motion between bone and titanium or cobalt-chrome alloys. Bischoff UW; Freeman MA; Smith D; Tuke MA; Gregson PJ J Bone Joint Surg Br; 1994 Sep; 76(5):713-6. PubMed ID: 8083256 [TBL] [Abstract][Full Text] [Related]
18. The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys. Goldberg JR; Gilbert JL Biomaterials; 2004 Feb; 25(5):851-64. PubMed ID: 14609674 [TBL] [Abstract][Full Text] [Related]
19. Surface, Subsurface and Tribological Properties of Ti6Al4V Alloy Shot Peened under Different Parameters. Yıldıran Avcu Y; Yetik O; Guney M; Iakovakis E; Sınmazçelik T; Avcu E Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 33008035 [TBL] [Abstract][Full Text] [Related]
20. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK? Torstrick FB; Evans NT; Stevens HY; Gall K; Guldberg RE Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]