BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 25823055)

  • 1. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
    Modares H; Ranatunga I; Lewis FL; Popa DO
    IEEE Trans Cybern; 2016 Mar; 46(3):655-67. PubMed ID: 25823055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Integrated Framework for Human-Robot Collaborative Manipulation.
    Sheng W; Thobbi A; Gu Y
    IEEE Trans Cybern; 2015 Oct; 45(10):2030-41. PubMed ID: 25373136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information.
    Peternel L; Tsagarakis N; Ajoudani A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):811-822. PubMed ID: 28436880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoting Interactions Between Humans and Robots Using Robotic Emotional Behavior.
    Ficocelli M; Terao J; Nejat G
    IEEE Trans Cybern; 2016 Dec; 46(12):2911-2923. PubMed ID: 26552105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On learning, representing, and generalizing a task in a humanoid robot.
    Calinon S; Guenter F; Billard A
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):286-98. PubMed ID: 17416157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance learning for robotic contact tasks using natural actor-critic algorithm.
    Kim B; Park J; Park S; Kang S
    IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):433-43. PubMed ID: 19696001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillators and crank turning: exploiting natural dynamics with a humanoid robot arm.
    Williamson MM
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2207-23. PubMed ID: 14599316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on Robot Fuzzy Neural Network Motion System Based on Artificial Intelligence.
    Hu J
    Comput Intell Neurosci; 2022; 2022():4347772. PubMed ID: 35186062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-state tracking control of a mobile robot using neural networks.
    Chaitanya VS
    Int J Neural Syst; 2005 Oct; 15(5):403-14. PubMed ID: 16278944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-adaptive robot training of stroke survivors for continuous tracking movements.
    Vergaro E; Casadio M; Squeri V; Giannoni P; Morasso P; Sanguineti V
    J Neuroeng Rehabil; 2010 Mar; 7():13. PubMed ID: 20230610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot.
    Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X
    Front Robot AI; 2018; 5():116. PubMed ID: 33500995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A double-loop structure in the adaptive generalized predictive control algorithm for control of robot end-point contact force.
    Wen S; Zhu J; Li X; Chen S
    ISA Trans; 2014 Sep; 53(5):1603-8. PubMed ID: 24973336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural network control of multifingered robot hands using visual feedback.
    Zhao Y; Cheah CC
    IEEE Trans Neural Netw; 2009 May; 20(5):758-67. PubMed ID: 19369155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of artificial intelligence in safe human-robot interactions.
    Najmaei N; Kermani MR
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):448-59. PubMed ID: 20699212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.
    Li Y; Sun R; Wang Y; Li H; Zheng X
    PLoS One; 2016; 11(11):e0165600. PubMed ID: 27806074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linguistic decision making for robot route learning.
    He H; McGinnity TM; Coleman S; Gardiner B
    IEEE Trans Neural Netw Learn Syst; 2014 Jan; 25(1):203-15. PubMed ID: 24806654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive and predictive control of a simulated robot arm.
    Tolu S; Vanegas M; Garrido JA; Luque NR; Ros E
    Int J Neural Syst; 2013 Jun; 23(3):1350010. PubMed ID: 23627657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.