These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25824491)

  • 1. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth.
    Chen PY; Farhat M; Bağcı H
    Nanotechnology; 2015 Apr; 26(16):164002. PubMed ID: 25824491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range.
    Ye L; Chen Y; Cai G; Liu N; Zhu J; Song Z; Liu QH
    Opt Express; 2017 May; 25(10):11223-11232. PubMed ID: 28788804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure.
    Cai Y; Xu KD
    Opt Express; 2018 Nov; 26(24):31693-31705. PubMed ID: 30650752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultra-broadband multilayered graphene absorber.
    Amin M; Farhat M; Bağcı H
    Opt Express; 2013 Dec; 21(24):29938-48. PubMed ID: 24514545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrawideband Terahertz Absorber with Dielectric Cylinders Loaded Patterned Graphene Structure.
    Liu S; Li S
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optically Transparent Broadband Microwave Absorber by Graphene and Metallic Rings.
    Ma L; Xu H; Lu Z; Tan J
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17727-17738. PubMed ID: 35389630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers.
    Rahmanzadeh M; Rajabalipanah H; Abdolali A
    Appl Opt; 2018 Feb; 57(4):959-968. PubMed ID: 29400774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical method for designing tunable terahertz absorbers with the desired frequency and bandwidth.
    Liu Z; Guo L; Zhang Q
    Opt Express; 2021 Nov; 29(24):39777-39787. PubMed ID: 34809334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays.
    Ke S; Wang B; Huang H; Long H; Wang K; Lu P
    Opt Express; 2015 Apr; 23(7):8888-900. PubMed ID: 25968726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inversion Method Characterization of Graphene-Based Coordination Absorbers Incorporating Periodically Patterned Metal Ring Metasurfaces.
    Bao Z; Tang Y; Hu ZD; Zhang C; Balmakou A; Khakhomov S; Semchenko I; Wang J
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32498313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simple and Efficient Method for Designing Broadband Terahertz Absorber Based on Singular Graphene Metasurface.
    Liu Z; Guo L; Zhang Q
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31547082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel structure for tunable terahertz absorber based on graphene.
    Xu BZ; Gu CQ; Li Z; Niu ZY
    Opt Express; 2013 Oct; 21(20):23803-11. PubMed ID: 24104291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and performance of a terahertz absorber based on patterned graphene.
    Jiang Y; Zhang H; Wang J; Gao CN; Wang J; Cao WP
    Opt Lett; 2018 Sep; 43(17):4296-4299. PubMed ID: 30160711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-band tunable perfect metamaterial absorber in the THz range.
    Yao G; Ling F; Yue J; Luo C; Ji J; Yao J
    Opt Express; 2016 Jan; 24(2):1518-27. PubMed ID: 26832531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Dual-Band Terahertz Perfect Metamaterial Absorber Based on Circuit Theory.
    Liu Z; Guo L; Zhang Q
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32911747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching.
    Mou J; Shen Z
    Sci Rep; 2017 Jul; 7(1):6922. PubMed ID: 28761154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-absolute polarization insensitivity in grapheme based ultra-narrowband perfect visible light absorber.
    Yildirim DU; Ghobadi A; Ozbay E
    Sci Rep; 2018 Oct; 8(1):15210. PubMed ID: 30315189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.