These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25824529)

  • 21. Tropical surface temperature response to vegetation cover changes and the role of drylands.
    Feldman AF; Short Gianotti DJ; Dong J; Trigo IF; Salvucci GD; Entekhabi D
    Glob Chang Biol; 2023 Jan; 29(1):110-125. PubMed ID: 36169920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emerging signals of declining forest resilience under climate change.
    Forzieri G; Dakos V; McDowell NG; Ramdane A; Cescatti A
    Nature; 2022 Aug; 608(7923):534-539. PubMed ID: 35831499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Urgent need for warming experiments in tropical forests.
    Cavaleri MA; Reed SC; Smith WK; Wood TE
    Glob Chang Biol; 2015 Jun; 21(6):2111-21. PubMed ID: 25641092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Satellite observed cooling effects from re-vegetation on the Mongolian Plateau.
    Jiang H; Lu N; Zhang X; Yao L; Bai Y
    Sci Total Environ; 2021 Aug; 781():146707. PubMed ID: 33784527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biophysical climate mitigation potential of riparian forest ecosystems in arid Northwest China.
    Yonghong S; Fandi L; Gaofeng Z; Zhang K; Qi Z
    Sci Total Environ; 2023 Mar; 862():160856. PubMed ID: 36521605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong cooling induced by stand-replacing fires through albedo in Siberian larch forests.
    Chen D; Loboda TV; He T; Zhang Y; Liang S
    Sci Rep; 2018 Mar; 8(1):4821. PubMed ID: 29555985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Afforestation in China cools local land surface temperature.
    Peng SS; Piao S; Zeng Z; Ciais P; Zhou L; Li LZ; Myneni RB; Yin Y; Zeng H
    Proc Natl Acad Sci U S A; 2014 Feb; 111(8):2915-9. PubMed ID: 24516135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth.
    Forzieri G; Alkama R; Miralles DG; Cescatti A
    Science; 2017 Jun; 356(6343):1180-1184. PubMed ID: 28546316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada.
    Chen HY; Luo Y; Reich PB; Searle EB; Biswas SR
    Ecol Lett; 2016 Sep; 19(9):1150-8. PubMed ID: 27465040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reassessment of growth-climate relations indicates the potential for decline across Eurasian boreal larch forests.
    Li W; Manzanedo RD; Jiang Y; Ma W; Du E; Zhao S; Rademacher T; Dong M; Xu H; Kang X; Wang J; Wu F; Cui X; Pederson N
    Nat Commun; 2023 Jun; 14(1):3358. PubMed ID: 37291110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biophysical climate impacts of recent changes in global forest cover.
    Alkama R; Cescatti A
    Science; 2016 Feb; 351(6273):600-4. PubMed ID: 26912702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased autumn rainfall disrupts predator-prey interactions in fragmented boreal forests.
    Terraube J; Villers A; Poudré L; Varjonen R; Korpimäki E
    Glob Chang Biol; 2017 Apr; 23(4):1361-1373. PubMed ID: 27371812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature-induced water stress in high-latitude forests in response to natural and anthropogenic warming.
    Trahan MW; Schubert BA
    Glob Chang Biol; 2016 Feb; 22(2):782-91. PubMed ID: 26451763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.
    Rich RL; Stefanski A; Montgomery RA; Hobbie SE; Kimball BA; Reich PB
    Glob Chang Biol; 2015 Jun; 21(6):2334-48. PubMed ID: 25640748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hiding from the climate: Characterizing microrefugia for boreal forest understory species.
    Greiser C; Ehrlén J; Meineri E; Hylander K
    Glob Chang Biol; 2020 Feb; 26(2):471-483. PubMed ID: 31833152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming.
    Ágreda T; Águeda B; Olano JM; Vicente-Serrano SM; Fernández-Toirán M
    Glob Chang Biol; 2015 Sep; 21(9):3499-510. PubMed ID: 25930066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effects of climate change, fire and harvest on carbon storage of boreal forests in the Great Xing'an Mountains, China.].
    Huang C; He HS; Liang Y; Wu ZW
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2088-2100. PubMed ID: 30039645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistent and pervasive compositional shifts of western boreal forest plots in Canada.
    Searle EB; Chen HY
    Glob Chang Biol; 2017 Feb; 23(2):857-866. PubMed ID: 27465312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming.
    Shestakova TA; Gutiérrez E; Kirdyanov AV; Camarero JJ; Génova M; Knorre AA; Linares JC; Resco de Dios V; Sánchez-Salguero R; Voltas J
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):662-7. PubMed ID: 26729860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined climate and carbon-cycle effects of large-scale deforestation.
    Bala G; Caldeira K; Wickett M; Phillips TJ; Lobell DB; Delire C; Mirin A
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6550-5. PubMed ID: 17420463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.