BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25824707)

  • 21. Progress and Challenges in Quantifying Carbonyl-Metabolomic Phenomes with LC-MS/MS.
    Sun Y; Tang H; Wang Y
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully automated on-line two-dimensional liquid chromatography in combination with ESI MS/MS detection for quantification of sugar phosphates in yeast cell extracts.
    Klavins K; Chu DB; Hann S; Koellensperger G
    Analyst; 2014 Mar; 139(6):1512-20. PubMed ID: 24471156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome.
    Xu W; Chen D; Wang N; Zhang T; Zhou R; Huan T; Lu Y; Su X; Xie Q; Li L; Li L
    Anal Chem; 2015 Jan; 87(2):829-36. PubMed ID: 25486321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma.
    Sonnenberg RA; Naz S; Cougnaud L; Vuckovic D
    J Chromatogr A; 2019 Dec; 1608():460419. PubMed ID: 31439439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A large-scale analysis of targeted metabolomics data from heterogeneous biological samples provides insights into metabolite dynamics.
    Lee HJ; Kremer DM; Sajjakulnukit P; Zhang L; Lyssiotis CA
    Metabolomics; 2019 Jul; 15(7):103. PubMed ID: 31289941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneously quantitative analysis of peptides and chemical components in Cervus and Cucumis polypeptide injection (Songmeile®) using reversed phase liquid chromatography-hydrophilic interaction liquid chromatography-tandem mass spectrometry.
    Liu W; Cao Y; Ren Y; Xu X; He L; Xia R; Tu P; Wang Y; Song Y; Li J
    J Chromatogr A; 2020 Apr; 1617():460827. PubMed ID: 31901294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Offline Two-Dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome Following Fecal Microbiota Transplantation.
    Anderson BG; Raskind A; Hissong R; Dougherty MK; McGill SK; Gulati AS; Theriot CM; Kennedy RT; Evans CR
    J Proteome Res; 2024 Jun; 23(6):2000-2012. PubMed ID: 38752739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive
    Zhang T; Wang W; Wuhrer M; de Haan N
    Anal Chem; 2024 Jun; 96(22):8942-8948. PubMed ID: 38758656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of chromatographic conditions in reversed phase liquid chromatography-mass spectrometry systems for fingerprinting of polar and amphiphilic plant metabolites.
    Nielsen NJ; Tomasi G; Christensen JH
    Anal Bioanal Chem; 2016 Aug; 408(21):5855-5865. PubMed ID: 27344456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Untargeted metabolomics by high resolution mass spectrometry coupled to normal and reversed phase liquid chromatography as a tool to study the in vitro biotransformation of new psychoactive substances.
    Manier SK; Keller A; Schäper J; Meyer MR
    Sci Rep; 2019 Feb; 9(1):2741. PubMed ID: 30808896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LC-MS metabolomics of polar compounds.
    Rojo D; Barbas C; Rupérez FJ
    Bioanalysis; 2012 Jun; 4(10):1235-43. PubMed ID: 22651567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Online dual gradient reversed-phase/porous graphitized carbon nanoHPLC for proteomic applications.
    Lewandrowski U; Sickmann A
    Anal Chem; 2010 Jun; 82(12):5391-6. PubMed ID: 20481522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of chromatographic conditions for the targeted tandem mass spectrometric determination of 354 mammalian metabolites.
    Floros DJ; Xu K; Berthiller F; Schwartz-Zimmermann H
    J Chromatogr A; 2023 May; 1697():463985. PubMed ID: 37062154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward 'omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism.
    Ivanisevic J; Zhu ZJ; Plate L; Tautenhahn R; Chen S; O'Brien PJ; Johnson CH; Marletta MA; Patti GJ; Siuzdak G
    Anal Chem; 2013 Jul; 85(14):6876-84. PubMed ID: 23781873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A nano-chip-LC/MSn based strategy for characterization of modified nucleosides using reduced porous graphitic carbon as a stationary phase.
    Giessing AM; Scott LG; Kirpekar F
    J Am Soc Mass Spectrom; 2011 Jul; 22(7):1242-51. PubMed ID: 21953107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LC-MS untargeted metabolomics assesses the delayed response of glufosinate treatment of transgenic glufosinate resistant (GR) buffalo grasses (Stenotaphrum secundatum L.).
    Boonchaisri S; Rochfort S; Stevenson T; Dias DA
    Metabolomics; 2021 Feb; 17(3):28. PubMed ID: 33609206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasma metabolome analysis by integrated ionization rapid-resolution liquid chromatography/tandem mass spectrometry.
    Tian H; Bai J; An Z; Chen Y; Zhang R; He J; Bi X; Song Y; Abliz Z
    Rapid Commun Mass Spectrom; 2013 Sep; 27(18):2071-80. PubMed ID: 23943328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An off-line high pH reversed-phase fractionation and nano-liquid chromatography-mass spectrometry method for global proteomic profiling of cell lines.
    Wang H; Sun S; Zhang Y; Chen S; Liu P; Liu B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 974():90-5. PubMed ID: 25463202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Profiling of urinary amino-carboxylic metabolites by in-situ heptafluorobutyl chloroformate mediated sample preparation and gas chromatography-mass spectrometry.
    Hušek P; Švagera Z; Hanzlíková D; Řimnáčová L; Zahradníčková H; Opekarová I; Šimek P
    J Chromatogr A; 2016 Apr; 1443():211-32. PubMed ID: 27012787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LC-MS/MS analysis of the central energy and carbon metabolites in biological samples following derivatization by dimethylaminophenacyl bromide.
    Willacey CCW; Naaktgeboren M; Lucumi Moreno E; Wegrzyn AB; van der Es D; Karu N; Fleming RMT; Harms AC; Hankemeier T
    J Chromatogr A; 2019 Dec; 1608():460413. PubMed ID: 31395359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.