BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25825127)

  • 21. Listeria monocytogenes tyrosine phosphatases affect wall teichoic acid composition and phage resistance.
    Nir-Paz R; Eugster MR; Zeiman E; Loessner MJ; Calendar R
    FEMS Microbiol Lett; 2012 Jan; 326(2):151-60. PubMed ID: 22092439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whole Genome Sequence Analysis of Phage-Resistant
    Brown P; Chen Y; Parsons C; Brown E; Loessner MJ; Shen Y; Kathariou S
    Pathogens; 2021 Feb; 10(2):. PubMed ID: 33668492
    [No Abstract]   [Full Text] [Related]  

  • 23. Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus.
    Winstel V; Xia G; Peschel A
    Int J Med Microbiol; 2014 May; 304(3-4):215-21. PubMed ID: 24365646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Special position of strongly haemolytic strains of the genus Listeria].
    Seeliger HP; Schrettenbrunner A; Pongratz G; Hof H
    Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1982 Jun; 252(2):176-90. PubMed ID: 6812318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM.
    Xia G; Maier L; Sanchez-Carballo P; Li M; Otto M; Holst O; Peschel A
    J Biol Chem; 2010 Apr; 285(18):13405-15. PubMed ID: 20185825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation.
    Rismondo J; Percy MG; Gründling A
    J Biol Chem; 2018 Mar; 293(9):3293-3306. PubMed ID: 29343515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic Differences between Listeria monocytogenes EGDe Isolates Reveal Crucial Roles for SigB and Wall Rhamnosylation in Biofilm Formation.
    Hsu CY; Cairns L; Hobley L; Abbott J; O'Byrne C; Stanley-Wall NR
    J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31964697
    [No Abstract]   [Full Text] [Related]  

  • 28. l-Rhamnosylation of wall teichoic acids promotes efficient surface association of Listeria monocytogenes virulence factors InlB and Ami through interaction with GW domains.
    Carvalho F; Sousa S; Cabanes D
    Environ Microbiol; 2018 Nov; 20(11):3941-3951. PubMed ID: 29984543
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Song Y; Peters TL; Bryan DW; Hudson LK; Denes TG
    Viruses; 2019 Dec; 11(12):. PubMed ID: 31861087
    [No Abstract]   [Full Text] [Related]  

  • 30. Listeria monocytogenes wall teichoic acid decoration in virulence and cell-to-cell spread.
    Spears PA; Havell EA; Hamrick TS; Goforth JB; Levine AL; Abraham ST; Heiss C; Azadi P; Orndorff PE
    Mol Microbiol; 2016 Sep; 101(5):714-30. PubMed ID: 26871418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid analysis of Listeria monocytogenes cell wall teichoic acid carbohydrates by ESI-MS/MS.
    Eugster MR; Loessner MJ
    PLoS One; 2011; 6(6):e21500. PubMed ID: 21738682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a Lipoteichoic Acid Glycosyltransferase Enzyme Reveals that GW-Domain-Containing Proteins Can Be Retained in the Cell Wall of Listeria monocytogenes in the Absence of Lipoteichoic Acid or Its Modifications.
    Percy MG; Karinou E; Webb AJ; Gründling A
    J Bacteriol; 2016 Aug; 198(15):2029-42. PubMed ID: 27185829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of L. monocytogenes serotype 4b gtcA in gastrointestinal listeriosis in A/J mice.
    Faith N; Kathariou S; Cheng Y; Promadej N; Neudeck BL; Zhang Q; Luchansky J; Czuprynski C
    Foodborne Pathog Dis; 2009; 6(1):39-48. PubMed ID: 18991548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LygA retention on the surface of Listeria monocytogenes via its interaction with wall teichoic acid modulates bacterial homeostasis and virulence.
    Yao H; Li G; Xiong X; Jin F; Li S; Xie X; Zhong D; Zhang R; Meng F; Yin Y; Jiao X
    PLoS Pathog; 2023 Jun; 19(6):e1011482. PubMed ID: 37379353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of Derivatized Wall Teichoic Acids Confirms that a Mutation in Phage-Resistant
    Trudelle DM; Bryan DW; Ray S; Munafo JP; Denes TG
    ACS Omega; 2022 May; 7(20):17002-17013. PubMed ID: 35647425
    [No Abstract]   [Full Text] [Related]  

  • 36. Isolation of bacteriophages from Listeria monocytogenes Serovar 5 and Listeria innocua.
    Rocourt J; Schrettenbrunner A; Seeliger HP
    Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1982 Apr; 251(4):505-11. PubMed ID: 6808789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterisation of a new cell wall teichoic acid produced by Listeria innocua ŽM39 and analysis of its biosynthesis genes.
    Bellich B; Janež N; Sterniša M; Klančnik A; Ravenscroft N; Rizzo R; Sabotič J; Cescutti P
    Carbohydr Res; 2022 Jan; 511():108499. PubMed ID: 35007911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PrfA-like transcription factor gene lmo0753 contributes to L-rhamnose utilization in Listeria monocytogenes strains associated with human food-borne infections.
    Salazar JK; Wu Z; McMullen PD; Luo Q; Freitag NE; Tortorello ML; Hu S; Zhang W
    Appl Environ Microbiol; 2013 Sep; 79(18):5584-92. PubMed ID: 23835178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Absence of N-Acetylglucosamine Glycosylation on
    Thomasen RSS; Dos Santos PT; Sternkopf Lillebæk EM; Skov MN; Kemp M; Kallipolitis BH
    Front Microbiol; 2022; 13():897682. PubMed ID: 35633716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity.
    Gerlach D; Guo Y; De Castro C; Kim SH; Schlatterer K; Xu FF; Pereira C; Seeberger PH; Ali S; Codée J; Sirisarn W; Schulte B; Wolz C; Larsen J; Molinaro A; Lee BL; Xia G; Stehle T; Peschel A
    Nature; 2018 Nov; 563(7733):705-709. PubMed ID: 30464342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.