BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25825127)

  • 81. Structural study on teichoic acids of Listeria monocytogenes types 4a and 4d.
    Fujii H; Kamisango K; Nagaoka M; Uchikawa K; Sekikawa I; Yamamoto K; Azuma I
    J Biochem; 1985 Mar; 97(3):883-91. PubMed ID: 3926758
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Flagellin from Listeria monocytogenes is glycosylated with beta-O-linked N-acetylglucosamine.
    Schirm M; Kalmokoff M; Aubry A; Thibault P; Sandoz M; Logan SM
    J Bacteriol; 2004 Oct; 186(20):6721-7. PubMed ID: 15466023
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII.
    Kim JW; Dutta V; Elhanafi D; Lee S; Osborne JA; Kathariou S
    Appl Environ Microbiol; 2012 Mar; 78(6):1995-2004. PubMed ID: 22247158
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Structural variations and roles of rhamnose-rich cell wall polysaccharides in Gram-positive bacteria.
    Guérin H; Kulakauskas S; Chapot-Chartier MP
    J Biol Chem; 2022 Oct; 298(10):102488. PubMed ID: 36113580
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Gene gain and loss and recombination shape evolution of Listeria bacteriophages of the genus Pecentumvirus.
    Blanco Fernandez MD; Klumpp J; Barrios ME; Mbayed VA
    Genomics; 2021 Jan; 113(1 Pt 1):411-419. PubMed ID: 33301894
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Imbalance of peptidoglycan biosynthesis alters the cell surface charge of
    Schulz LM; Rothe P; Halbedel S; Gründling A; Rismondo J
    Cell Surf; 2022 Dec; 8():100085. PubMed ID: 36304571
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Ribitol-Containing Wall Teichoic Acid of Tetragenococcus halophilus Is Targeted by Bacteriophage phiWJ7 as a Binding Receptor.
    Wakinaka T; Matsutani M; Watanabe J; Mogi Y; Tokuoka M; Ohnishi A
    Microbiol Spectr; 2022 Apr; 10(2):e0033622. PubMed ID: 35311554
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Bacteriophage therapy and the mutant selection window.
    Cairns BJ; Payne RJ
    Antimicrob Agents Chemother; 2008 Dec; 52(12):4344-50. PubMed ID: 18838590
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Molecular mechanisms underlying the structural diversity of rhamnose-rich cell wall polysaccharides in lactococci.
    Guérin H; Courtin P; Guillot A; Péchoux C; Mahony J; van Sinderen D; Kulakauskas S; Cambillau C; Touzé T; Chapot-Chartier MP
    J Biol Chem; 2024 Jan; 300(1):105578. PubMed ID: 38110036
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Turnover of cell wall in Listeria monocytogenes.
    Doyle RJ; Motley MA; Carstens PH
    Carbohydr Res; 1982 Jun; 104(1):147-52. PubMed ID: 6811135
    [No Abstract]   [Full Text] [Related]  

  • 91. Phage receptor material in Lactobacillus casei cell wall. I. Effect of L-rhamnose on phage adsorption to the cell wall.
    Yokokura T
    Jpn J Microbiol; 1971 Sep; 15(5):457-63. PubMed ID: 5316574
    [No Abstract]   [Full Text] [Related]  

  • 92. The isolation and characterization of bacteriophages from Listeria monocytogenes.
    SWORD CP; PICKETT MJ
    J Gen Microbiol; 1961 Jun; 25():241-8. PubMed ID: 13774329
    [No Abstract]   [Full Text] [Related]  

  • 93. A Look inside the Listeria monocytogenes Biofilms Extracellular Matrix.
    Colagiorgi A; Di Ciccio P; Zanardi E; Ghidini S; Ianieri A
    Microorganisms; 2016 Jul; 4(3):. PubMed ID: 27681916
    [TBL] [Abstract][Full Text] [Related]  

  • 94. L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to Antimicrobial Peptides by Delaying Interaction with the Membrane.
    Carvalho F; Atilano ML; Pombinho R; Covas G; Gallo RL; Filipe SR; Sousa S; Cabanes D
    PLoS Pathog; 2015 May; 11(5):e1004919. PubMed ID: 26001194
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Selection and Characterization of Phage-Resistant Mutant Strains of Listeria monocytogenes Reveal Host Genes Linked to Phage Adsorption.
    Denes T; den Bakker HC; Tokman JI; Guldimann C; Wiedmann M
    Appl Environ Microbiol; 2015 Jul; 81(13):4295-305. PubMed ID: 25888172
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Membrane fusion during phage lysis.
    Rajaure M; Berry J; Kongari R; Cahill J; Young R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5497-502. PubMed ID: 25870259
    [TBL] [Abstract][Full Text] [Related]  

  • 97. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus.
    Paez-Espino D; Sharon I; Morovic W; Stahl B; Thomas BC; Barrangou R; Banfield JF
    mBio; 2015 Apr; 6(2):. PubMed ID: 25900652
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Models for the directed evolution of bacterial allelopathy: bacteriophage lysins.
    Bull JJ; Crandall C; Rodriguez A; Krone SM
    PeerJ; 2015; 3():e879. PubMed ID: 25870772
    [TBL] [Abstract][Full Text] [Related]  

  • 99. T4 bacteriophage-mediated inhibition of adsorption and replication of human adenovirus in vitro.
    Przybylski M; Borysowski J; Jakubowska-Zahorska R; Weber-Dąbrowska B; Górski A
    Future Microbiol; 2015; 10(4):453-60. PubMed ID: 25865186
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Bacteriophage and their potential roles in the human oral cavity.
    Edlund A; Santiago-Rodriguez TM; Boehm TK; Pride DT
    J Oral Microbiol; 2015; 7():27423. PubMed ID: 25861745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.