These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25825127)

  • 121. The Analysis of OmpA and Rz/Rz1 of Lytic Bacteriophage from Surabaya, Indonesia.
    Sjahriani T; Wasito EB; Tyasningsih W
    Scientifica (Cairo); 2021; 2021():7494144. PubMed ID: 35096434
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Horizontal transfer and evolution of wall teichoic acid gene cassettes in 
    Sutton G; Fogel GB; Abramson B; Brinkac L; Michael T; Liu ES; Thomas S
    F1000Res; 2021; 10():354. PubMed ID: 35035886
    [No Abstract]   [Full Text] [Related]  

  • 123. Non-coding RNA regulates phage sensitivity in Listeria monocytogenes.
    Tian Y; Wu L; Zhu M; Yang Z; Pilar G; Bao H; Zhou Y; Wang R; Zhang H
    PLoS One; 2021; 16(12):e0260768. PubMed ID: 34928977
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Mechanisms and clinical importance of bacteriophage resistance.
    Egido JE; Costa AR; Aparicio-Maldonado C; Haas PJ; Brouns SJJ
    FEMS Microbiol Rev; 2022 Feb; 46(1):. PubMed ID: 34558600
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Isolation and engineering of a Listeria grayi bacteriophage.
    Erickson S; Paulson J; Brown M; Hahn W; Gil J; Barron-Montenegro R; Moreno-Switt AI; Eisenberg M; Nguyen MM
    Sci Rep; 2021 Sep; 11(1):18947. PubMed ID: 34556683
    [TBL] [Abstract][Full Text] [Related]  

  • 126. The role of the Listeria monocytogenes surfactome in biofilm formation.
    Janež N; Škrlj B; Sterniša M; Klančnik A; Sabotič J
    Microb Biotechnol; 2021 Jul; 14(4):1269-1281. PubMed ID: 34106516
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Glucose Decoration on Wall Teichoic Acid Is Required for Phage Adsorption and InlB-Mediated Virulence in Listeria ivanovii.
    Sumrall ET; Schneider SR; Boulos S; Loessner MJ; Shen Y
    J Bacteriol; 2021 Jul; 203(16):e0013621. PubMed ID: 34096780
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Use of Bacteriophage Amended with CRISPR-Cas Systems to Combat Antimicrobial Resistance in the Bacterial Foodborne Pathogen
    Parsons C; Brown P; Kathariou S
    Antibiotics (Basel); 2021 Mar; 10(3):. PubMed ID: 33802904
    [No Abstract]   [Full Text] [Related]  

  • 129. Whole Genome Sequence Analysis of Phage-Resistant
    Brown P; Chen Y; Parsons C; Brown E; Loessner MJ; Shen Y; Kathariou S
    Pathogens; 2021 Feb; 10(2):. PubMed ID: 33668492
    [No Abstract]   [Full Text] [Related]  

  • 130. Modifications of cell wall polymers in Gram-positive bacteria by multi-component transmembrane glycosylation systems.
    Rismondo J; Gillis A; Gründling A
    Curr Opin Microbiol; 2021 Apr; 60():24-33. PubMed ID: 33578058
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Complete Genome Sequence of a Serotype 7 Listeria monocytogenes Strain, FSL R9-0915.
    Peters TL; Hudson LK; Bryan DW; Song Y; den Bakker HC; Kucerova Z; Denes TG
    Microbiol Resour Announc; 2021 Jan; 10(1):. PubMed ID: 33414303
    [No Abstract]   [Full Text] [Related]  

  • 132. Mutant and Recombinant Phages Selected from
    Peters TL; Song Y; Bryan DW; Hudson LK; Denes TG
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887717
    [TBL] [Abstract][Full Text] [Related]  

  • 133. GtcA is required for LTA glycosylation in
    Rismondo J; Haddad TFM; Shen Y; Loessner MJ; Gründling A
    Cell Surf; 2020 Dec; 6():100038. PubMed ID: 32743150
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Glycotyping and Specific Separation of Listeria monocytogenes with a Novel Bacteriophage Protein Tool Kit.
    Sumrall ET; Röhrig C; Hupfeld M; Selvakumar L; Du J; Dunne M; Schmelcher M; Shen Y; Loessner MJ
    Appl Environ Microbiol; 2020 Jun; 86(13):. PubMed ID: 32358009
    [TBL] [Abstract][Full Text] [Related]  

  • 135.
    Meireles D; Pombinho R; Carvalho F; Sousa S; Cabanes D
    Pathogens; 2020 Apr; 9(4):. PubMed ID: 32316182
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Galactosylated wall teichoic acid, but not lipoteichoic acid, retains InlB on the surface of serovar 4b Listeria monocytogenes.
    Sumrall ET; Schefer CRE; Rismondo J; Schneider SR; Boulos S; Gründling A; Loessner MJ; Shen Y
    Mol Microbiol; 2020 Mar; 113(3):638-649. PubMed ID: 32185836
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Three distinct glycosylation pathways are involved in the decoration of
    Theodorou I; Courtin P; Sadovskaya I; Palussière S; Fenaille F; Mahony J; Chapot-Chartier MP; van Sinderen D
    J Biol Chem; 2020 Apr; 295(16):5519-5532. PubMed ID: 32169901
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Stress Response of
    Qian H; Li W; Guo L; Tan L; Liu H; Wang J; Pan Y; Zhao Y
    Front Microbiol; 2020; 11():23. PubMed ID: 32153513
    [TBL] [Abstract][Full Text] [Related]  

  • 139.
    Song Y; Peters TL; Bryan DW; Hudson LK; Denes TG
    Viruses; 2019 Dec; 11(12):. PubMed ID: 31861087
    [No Abstract]   [Full Text] [Related]  

  • 140. Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion.
    Sumrall ET; Shen Y; Keller AP; Rismondo J; Pavlou M; Eugster MR; Boulos S; Disson O; Thouvenot P; Kilcher S; Wollscheid B; Cabanes D; Lecuit M; Gründling A; Loessner MJ
    PLoS Pathog; 2019 Oct; 15(10):e1008032. PubMed ID: 31589660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.