These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25825156)

  • 21. Protochlorophyllide and chlorophyll forms in dark-grown stems and stem-related organs.
    Skribanek A; Apatini D; Inaoka M; Böddi B
    J Photochem Photobiol B; 2000; 55(2-3):172-7. PubMed ID: 10942082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular landscape of etioplast inner membranes in higher plants.
    Floris D; Kühlbrandt W
    Nat Plants; 2021 Apr; 7(4):514-523. PubMed ID: 33875833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoactive protochlorophyllide regeneration in cotyledons and leaves from higher plants.
    Schoefs B; Bertrand M; Funk C
    Photochem Photobiol; 2000 Nov; 72(5):660-8. PubMed ID: 11107852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial Nano-Morphology of the Prolamellar Body in Etiolated
    Bykowski M; Mazur R; Buszewicz D; Szach J; Mostowska A; Kowalewska Ł
    Front Cell Dev Biol; 2020; 8():586628. PubMed ID: 33117813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature.
    Garstka M; Venema JH; Rumak I; Gieczewska K; Rosiak M; Koziol-Lipinska J; Kierdaszuk B; Vredenberg WJ; Mostowska A
    Planta; 2007 Oct; 226(5):1165-81. PubMed ID: 17569078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photosynthetic apparatus of pea leaves under clinorotation conditions.
    Adamchuk NI; Fomishina RN; Mikhaylenko NF; Zolotareva EK
    J Gravit Physiol; 1999 Jul; 6(1):P143-4. PubMed ID: 11542995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of chlorophyll from protochlorophyll(ide) in green plant leaves.
    Ignatov NV; Litvin FF
    Biochemistry (Mosc); 2002 Aug; 67(8):949-55. PubMed ID: 12223097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of shoot tip and leaf removal on gravitropism in pea.
    Tepper HB; Yang RL
    J Plant Physiol; 1997 Oct; 151(4):502-4. PubMed ID: 11541061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that the mature leaves contribute auxin to the immature tissues of pea (Pisum sativum L.).
    Jager CE; Symons GM; Glancy NE; Reid JB; Ross JJ
    Planta; 2007 Jul; 226(2):361-8. PubMed ID: 17308928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of prolamellar-body-like ultrastructures in etiolated cyanobacterial cells overexpressing light-dependent protochlorophyllide oxidoreductase in Leptolyngbya boryana.
    Yamamoto H; Kojima-Ando H; Ohki K; Fujita Y
    J Gen Appl Microbiol; 2020 Jun; 66(2):129-139. PubMed ID: 32238622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds.
    Smrkolj P; Germ M; Kreft I; Stibilj V
    J Exp Bot; 2006; 57(14):3595-600. PubMed ID: 16957016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling of solute transport and cell expansion in pea stems.
    Schmalstig JG; Cosgrove DJ
    Plant Physiol; 1990; 94(4):1625-33. PubMed ID: 11537472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of clinorotation on the leaf mesophyll structure and pigment content in Arabidopsis thaliana L. and Pisum sativum L.
    Adamchuk NI
    J Gravit Physiol; 2004 Jul; 11(2):P201-3. PubMed ID: 16240508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth and development, and auxin polar transport in higher plants under microgravity conditions in space: BRIC-AUX on STS-95 space experiment.
    Ueda J; Miyamoto K; Yuda T; Hoshino T; Fujii S; Mukai C; Kamigaichi S; Aizawa S; Yoshizaki I; Shimazu T; Fukui K
    J Plant Res; 1999 Dec; 112(1108):487-92. PubMed ID: 11543177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of protein complexes and individual proteins upon transition of etioplasts to chloroplasts in pea (Pisum sativum).
    Kanervo E; Singh M; Suorsa M; Paakkarinen V; Aro E; Battchikova N; Aro EM
    Plant Cell Physiol; 2008 Mar; 49(3):396-410. PubMed ID: 18263621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidation of ligand binding and dimerization of NADPH:protochlorophyllide (Pchlide) oxidoreductase from pea (Pisum sativum L.) by structural analysis and simulations.
    Sameer H; Victor G; Katalin S; Henrik A
    Proteins; 2021 Oct; 89(10):1300-1314. PubMed ID: 34021929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anionic lipids facilitate membrane development and protochlorophyllide biosynthesis in etioplasts.
    Yoshihara A; Kobayashi K; Nagata N; Fujii S; Wada H; Kobayashi K
    Plant Physiol; 2024 Feb; 194(3):1692-1704. PubMed ID: 37962588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological variability in the ratios of protochlorophyllide forms in leaves and epicotyls of dark-grown pea (Pisum sativum L.) seedlings (a statistical method to resolve complex spectra).
    Szenzenstein A; Kósa A; Böddi B
    J Photochem Photobiol B; 2008 Feb; 90(2):88-94. PubMed ID: 18178095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus.
    Díaz-Vivancos P; Clemente-Moreno MJ; Rubio M; Olmos E; García JA; Martínez-Gómez P; Hernández JA
    J Exp Bot; 2008; 59(8):2147-60. PubMed ID: 18535298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation.
    Mai VC; Bednarski W; Borowiak-Sobkowiak B; Wilkaniec B; Samardakiewicz S; Morkunas I
    Phytochemistry; 2013 Sep; 93():49-62. PubMed ID: 23566717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.