BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25825237)

  • 1. A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia.
    Hashemitabar M; Sabbagh S; Orazizadeh M; Ghadiri A; Bahmanzadeh M
    J Assist Reprod Genet; 2015 Jun; 32(6):853-63. PubMed ID: 25825237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomics of sperm tail in asthenozoospermic patients: exploring the molecular pathways affecting sperm motility.
    Mirshahvaladi S; Topraggaleh TR; Bucak MN; Rahimizadeh P; Shahverdi A
    Cell Tissue Res; 2023 Jun; 392(3):793-810. PubMed ID: 36847810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex.
    Siva AB; Kameshwari DB; Singh V; Pavani K; Sundaram CS; Rangaraj N; Deenadayal M; Shivaji S
    Mol Hum Reprod; 2010 Jul; 16(7):452-62. PubMed ID: 20304782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of proteomic differences in asthenozoospermic sperm samples.
    Martínez-Heredia J; de Mateo S; Vidal-Taboada JM; Ballescà JL; Oliva R
    Hum Reprod; 2008 Apr; 23(4):783-91. PubMed ID: 18281682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia.
    Shen S; Wang J; Liang J; He D
    World J Urol; 2013 Dec; 31(6):1395-401. PubMed ID: 23455884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testis developmental related gene 1 (TDRG1) encodes a progressive motility-associated protein in human spermatozoa.
    Chen H; Tang L; Hong Q; Pan T; Weng S; Sun J; Wu Q; Zeng X; Tang Y; Luo T
    Hum Reprod; 2021 Jan; 36(2):283-292. PubMed ID: 33279973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aged men share the sperm protein PATE1 defect with young asthenozoospermia patients.
    Liu FJ; Liu X; Han JL; Wang YW; Jin SH; Liu XX; Liu J; Wang WT; Wang WJ
    Hum Reprod; 2015 Apr; 30(4):861-9. PubMed ID: 25637620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outer dense fibers stabilize the axoneme to maintain sperm motility.
    Zhao W; Li Z; Ping P; Wang G; Yuan X; Sun F
    J Cell Mol Med; 2018 Mar; 22(3):1755-1768. PubMed ID: 29168316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysine glutarylation in human sperm is associated with progressive motility.
    Cheng YM; Hu XN; Peng Z; Pan TT; Wang F; Chen HY; Chen WQ; Zhang Y; Zeng XH; Luo T
    Hum Reprod; 2019 Jul; 34(7):1186-1194. PubMed ID: 31194865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals.
    Cao X; Cui Y; Zhang X; Lou J; Zhou J; Bei H; Wei R
    Reprod Biol Endocrinol; 2018 Feb; 16(1):16. PubMed ID: 29482568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sperm mitochondrial dysfunction and oxidative stress as possible reasons for isolated asthenozoospermia.
    Nowicka-Bauer K; Lepczynski A; Ozgo M; Kamieniczna M; Fraczek M; Stanski L; Olszewska M; Malcher A; Skrzypczak W; Kurpisz MK
    J Physiol Pharmacol; 2018 Jun; 69(3):. PubMed ID: 30149371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic changes in human spermatozoa during in vitro capacitation and acrosome reaction in normozoospermia and asthenozoospermia.
    Chhikara N; Tomar AK; Datta SK; Yadav S
    Andrology; 2023 Jan; 11(1):73-85. PubMed ID: 36057948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incidence of sperm-tail tyrosine phosphorylation and hyperactivated motility in normozoospermic and asthenozoospermic human sperm samples.
    Yunes R; Doncel GF; Acosta AA
    Biocell; 2003 Apr; 27(1):29-36. PubMed ID: 12847912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia.
    Du Y; Li M; Chen J; Duan Y; Wang X; Qiu Y; Cai Z; Gui Y; Jiang H
    Hum Reprod; 2016 Jan; 31(1):24-33. PubMed ID: 26628640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered Molecular Pathways in the Proteome of Cryopreserved Sperm in Testicular Cancer Patients before Treatment.
    Panner Selvam MK; Agarwal A; Pushparaj PN
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30764484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motility and protein phosphorylation in healthy and asthenozoospermic sperm.
    Chan CC; Shui HA; Wu CH; Wang CY; Sun GH; Chen HM; Wu GJ
    J Proteome Res; 2009 Nov; 8(11):5382-6. PubMed ID: 19678645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative global proteomics approach to understanding the functional pathways dysregulated in the spermatozoa of asthenozoospermic testicular cancer patients.
    Panner Selvam MK; Agarwal A; Pushparaj PN
    Andrology; 2019 Jul; 7(4):454-462. PubMed ID: 30924599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copy number variation of functional RBMY1 is associated with sperm motility: an azoospermia factor-linked candidate for asthenozoospermia.
    Yan Y; Yang X; Liu Y; Shen Y; Tu W; Dong Q; Yang D; Ma Y; Yang Y
    Hum Reprod; 2017 Jul; 32(7):1521-1531. PubMed ID: 28498920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranslational lysine 2-hydroxyisobutyrylation of human sperm tail proteins affects motility.
    Cheng YM; Peng Z; Chen HY; Pan TT; Hu XN; Wang F; Luo T
    Hum Reprod; 2020 Mar; 35(3):494-503. PubMed ID: 32142584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia.
    Parte PP; Rao P; Redij S; Lobo V; D'Souza SJ; Gajbhiye R; Kulkarni V
    J Proteomics; 2012 Oct; 75(18):5861-71. PubMed ID: 22796355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.