BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 25825545)

  • 1. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy.
    Shubitidze F; Kekalo K; Stigliano R; Baker I
    J Appl Phys; 2015 Mar; 117(9):094302. PubMed ID: 25825545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.
    Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Nanoparticles with High Specific Absorption Rate at Low Alternating Magnetic Field.
    Kekalo K; Baker I; Meyers R; Shyong J
    Nano Life; 2015 Jun; 5(2):. PubMed ID: 26884816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.
    Piao D; Towner RA; Smith N; Chen WR
    Med Phys; 2013 Jun; 40(6):063301. PubMed ID: 23718611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heating Efficiency of Triple Vortex State Cylindrical Magnetic Nanoparticles.
    Wong W; Gan WL; Teo YK; Lew WS
    Nanoscale Res Lett; 2019 Dec; 14(1):376. PubMed ID: 31845087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia.
    Myrovali E; Papadopoulos K; Charalampous G; Kesapidou P; Vourlias G; Kehagias T; Angelakeris M; Wiedwald U
    ACS Omega; 2023 Apr; 8(14):12955-12967. PubMed ID: 37065034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
    Stigliano RV; Shubitidze F; Petryk JD; Shoshiashvili L; Petryk AA; Hoopes PJ
    Int J Hyperthermia; 2016 Nov; 32(7):735-48. PubMed ID: 27436449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.
    Lanier OL; Korotych OI; Monsalve AG; Wable D; Savliwala S; Grooms NWF; Nacea C; Tuitt OR; Dobson J
    Int J Hyperthermia; 2019; 36(1):687-701. PubMed ID: 31340687
    [No Abstract]   [Full Text] [Related]  

  • 9. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia.
    Khandhar AP; Ferguson RM; Simon JA; Krishnan KM
    J Biomed Mater Res A; 2012 Mar; 100(3):728-37. PubMed ID: 22213652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe
    Lemine OM; Algessair S; Madkhali N; Al-Najar B; El-Boubbou K
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice.
    Kettering M; Richter H; Wiekhorst F; Bremer-Streck S; Trahms L; Kaiser WA; Hilger I
    Nanotechnology; 2011 Dec; 22(50):505102. PubMed ID: 22107782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing magnetic nanoparticle based thermal therapies within the physical limits of heating.
    Etheridge ML; Bischof JC
    Ann Biomed Eng; 2013 Jan; 41(1):78-88. PubMed ID: 22855120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.
    Gavilán H; Avugadda SK; Fernández-Cabada T; Soni N; Cassani M; Mai BT; Chantrell R; Pellegrino T
    Chem Soc Rev; 2021 Oct; 50(20):11614-11667. PubMed ID: 34661212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in neuromodulation of the brain: A role for magnetic nanoparticles?
    Roet M; Hescham SA; Jahanshahi A; Rutten BPF; Anikeeva PO; Temel Y
    Prog Neurobiol; 2019 Jun; 177():1-14. PubMed ID: 30878723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells.
    Marcos-Campos I; Asín L; Torres TE; Marquina C; Tres A; Ibarra MR; Goya GF
    Nanotechnology; 2011 May; 22(20):205101. PubMed ID: 21444956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic albumin-conjugated magnetite nanoparticles, novel candidate for hyperthermia cancer therapy.
    Cheraghipour E; Javadpour S
    Int J Hyperthermia; 2013 Sep; 29(6):511-9. PubMed ID: 23862755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutaraldehyde mediated conjugation of amino-coated magnetic nanoparticles with albumin protein for nanothermotherapy.
    Zhao L; Yang B; Dai X; Wang X; Gao F; Zhang X; Tang J
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7117-20. PubMed ID: 21137877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ethylene-imine)-Functionalized Magnetite Nanoparticles Derivatized with Folic Acid: Heating and Targeting Properties.
    Ortega-Muñoz M; Plesselova S; Delgado AV; Santoyo-Gonzalez F; Salto-Gonzalez R; Giron-Gonzalez MD; Iglesias GR; López-Jaramillo FJ
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34063481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment.
    Brero F; Albino M; Antoccia A; Arosio P; Avolio M; Berardinelli F; Bettega D; Calzolari P; Ciocca M; Corti M; Facoetti A; Gallo S; Groppi F; Guerrini A; Innocenti C; Lenardi C; Locarno S; Manenti S; Marchesini R; Mariani M; Orsini F; Pignoli E; Sangregorio C; Veronese I; Lascialfari A
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32993001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.