BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25825603)

  • 1. 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy.
    Chen CY; Ke CJ; Yen KC; Hsieh HC; Sun JS; Lin FH
    Theranostics; 2015; 5(6):643-55. PubMed ID: 25825603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.
    Castilho M; Rodrigues J; Pires I; Gouveia B; Pereira M; Moseke C; Groll J; Ewald A; Vorndran E
    Biofabrication; 2015 Jan; 7(1):015004. PubMed ID: 25562119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
    Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L
    Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Bayer EA; Jordan J; Roy A; Gottardi R; Fedorchak MV; Kumta PN; Little SR
    Tissue Eng Part A; 2017 Dec; 23(23-24):1382-1393. PubMed ID: 28537482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manufacture of β-TCP/alginate scaffolds through a Fab@home model for application in bone tissue engineering.
    Diogo GS; Gaspar VM; Serra IR; Fradique R; Correia IJ
    Biofabrication; 2014 Jun; 6(2):025001. PubMed ID: 24657988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alginate/Poly(γ-glutamic Acid) Base Biocompatible Gel for Bone Tissue Engineering.
    Chan WP; Kung FC; Kuo YL; Yang MC; Lai WF
    Biomed Res Int; 2015; 2015():185841. PubMed ID: 26504784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of an aggregated alginate construct in a tubular perfusion system.
    Yeatts AB; Gordon CN; Fisher JP
    Tissue Eng Part C Methods; 2011 Dec; 17(12):1171-8. PubMed ID: 21895493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles.
    Yu G; Fan Y
    J Biomater Sci Polym Ed; 2008; 19(1):87-98. PubMed ID: 18177556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds.
    Kim MS; Kim G
    Carbohydr Polym; 2014 Dec; 114():213-221. PubMed ID: 25263884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effect of sustained release of growth factors and dynamic culture on osteoblastic differentiation of mesenchymal stem cells.
    Della Porta G; Nguyen BN; Campardelli R; Reverchon E; Fisher JP
    J Biomed Mater Res A; 2015 Jun; 103(6):2161-71. PubMed ID: 25346530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.
    Florczyk SJ; Kim DJ; Wood DL; Zhang M
    J Biomed Mater Res A; 2011 Sep; 98(4):614-20. PubMed ID: 21721118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive TGF-β1/HA alginate-based scaffolds for osteochondral tissue repair: design, realization and multilevel characterization.
    Coluccino L; Stagnaro P; Vassalli M; Scaglione S
    J Appl Biomater Funct Mater; 2016 Apr; 14(1):e42-52. PubMed ID: 26743836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration.
    Boga JC; Miguel SP; de Melo-Diogo D; Mendonça AG; Louro RO; Correia IJ
    Colloids Surf B Biointerfaces; 2018 May; 165():207-218. PubMed ID: 29486449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan-alginate hybrid scaffolds for bone tissue engineering.
    Li Z; Ramay HR; Hauch KD; Xiao D; Zhang M
    Biomaterials; 2005 Jun; 26(18):3919-28. PubMed ID: 15626439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced liver functions of HepG2 cells in the alginate/xyloglucan scaffold.
    Deng X; Cao Y; Yan H; Yang J; Xiong G; Yao H; Qi C
    Biotechnol Lett; 2015 Jan; 37(1):235-40. PubMed ID: 25208748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-laden poly(ɛ-caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: fabrication, seeding efficiency, and cell proliferation and distribution.
    Lee H; Ahn S; Bonassar LJ; Chun W; Kim G
    Tissue Eng Part C Methods; 2013 Oct; 19(10):784-93. PubMed ID: 23469894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering.
    Hsu SH; Huang TB; Cheng SJ; Weng SY; Tsai CL; Tseng CS; Chen DC; Liu TY; Fu KY; Yen BL
    Tissue Eng Part A; 2011 Jun; 17(11-12):1549-60. PubMed ID: 21284540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying.
    Ahn S; Lee H; Bonassar LJ; Kim G
    Biomacromolecules; 2012 Sep; 13(9):2997-3003. PubMed ID: 22913233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.