These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25825622)

  • 21. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of the fluid injection configuration on droplet size in a microfluidic T junction.
    Carrier O; Funfschilling D; Li HZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013003. PubMed ID: 24580316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation and manipulation of ferrofluid droplets with magnetic fields in a microdevice: a numerical parametric study.
    Amiri Roodan V; Gómez-Pastora J; Karampelas IH; González-Fernández C; Bringas E; Ortiz I; Chalmers JJ; Furlani EP; Swihart MT
    Soft Matter; 2020 Oct; 16(41):9506-9518. PubMed ID: 32966533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Droplet formation of biological non-Newtonian fluid in T-junction generators. II. Model for final droplet volume prediction.
    Marcali M; Chen X; Aucoin MG; Ren CL
    Phys Rev E; 2022 Feb; 105(2-2):025106. PubMed ID: 35291163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of temperature-actuated droplets within microfluidics.
    Khater A; Mohammadi M; Mohamad A; Nezhad AS
    Sci Rep; 2019 Mar; 9(1):3832. PubMed ID: 30846713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticles influence droplet formation in a T-shaped microfluidic.
    Wang R
    J Nanopart Res; 2013; 15(12):2128. PubMed ID: 24339728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of wall velocity slip on droplet generation in microfluidic T-junctions.
    Li X; He L; Lv S; Xu C; Qian P; Xie F; Liu M
    RSC Adv; 2019 Jul; 9(40):23229-23240. PubMed ID: 35514511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device.
    Ten Klooster S; Sahin S; Schroën K
    Sci Rep; 2019 May; 9(1):7820. PubMed ID: 31127142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis.
    Hung LH; Choi KM; Tseng WY; Tan YC; Shea KJ; Lee AP
    Lab Chip; 2006 Feb; 6(2):174-8. PubMed ID: 16450024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motion of a droplet through microfluidic ratchets.
    Liu J; Yap YF; Nguyen NT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046319. PubMed ID: 19905448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geometrically-mediated snap-off of water-in-oil emulsion droplets in microfluidic flow focusing devices.
    Yao J; Oakey J
    J Oil Gas Petrochem Sci; 2018; 1(2):42-46. PubMed ID: 32864607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High inertial microfluidics for droplet generation in a flow-focusing geometry.
    Mastiani M; Seo S; Riou B; Kim M
    Biomed Microdevices; 2019 Jun; 21(3):50. PubMed ID: 31203430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A lattice Boltzmann study of the effects of viscoelasticity on droplet formation in microfluidic cross-junctions.
    Gupta A; Sbragaglia M
    Eur Phys J E Soft Matter; 2016 Jan; 39(1):2. PubMed ID: 26794502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size-Based Sorting of Emulsion Droplets in Microfluidic Channels Patterned with Laser-Ablated Guiding Tracks.
    Rehman AU; Coskun UC; Rashid Z; Morova B; Jonáš A; Erten A; Kiraz A
    Anal Chem; 2020 Feb; 92(3):2597-2604. PubMed ID: 31905281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secondary Flows, Mixing, and Chemical Reaction Analysis of Droplet-Based Flow inside Serpentine Microchannels with Different Cross Sections.
    Ghazimirsaeed E; Madadelahi M; Dizani M; Shamloo A
    Langmuir; 2021 May; 37(17):5118-5130. PubMed ID: 33877832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.