These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 2582591)

  • 21. Role of endothelium-derived relaxing factor in parasympathetic coronary vasodilation.
    Broten TP; Miyashiro JK; Moncada S; Feigl EO
    Am J Physiol; 1992 May; 262(5 Pt 2):H1579-84. PubMed ID: 1590463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The central and regional cardiovascular responses to intravenous and intracoronary administration of the phenyldihydropyridine elgodipine in anaesthetized pigs.
    Sassen LM; Soei LK; Koning MM; Verdouw PD
    Br J Pharmacol; 1990 Feb; 99(2):355-63. PubMed ID: 2328400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regional myocardial O2 consumption and coronary blood flow responses to acetylcholine in rabbit heart.
    Acad BA; Weiss R
    Arch Int Physiol Biochim; 1989 Apr; 97(2):197-204. PubMed ID: 2476097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of nitric oxide on vascular, metabolic, and contractile responses to dobutamine in in situ canine hearts.
    Crystal GJ; Zhou X; Gurevicius J; Ramez Salem M
    Anesth Analg; 1998 Nov; 87(5):994-1001. PubMed ID: 9806671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coronary vascular responses to short-term cocaine administration in conscious baboons compared with dogs.
    Shannon RP; Mathier MA; Shen YT
    J Am Coll Cardiol; 2000 Apr; 35(5):1347-54. PubMed ID: 10758979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coronary pressure-flow relations in hypertensive left ventricular hypertrophy. Comparison of intact autoregulation with physiological and pharmacological vasodilation in the dog.
    Jeremy RW; Fletcher PJ; Thompson J
    Circ Res; 1989 Jul; 65(1):224-36. PubMed ID: 2525430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myocardial oxygen consumption and blood flow during nicotine infusion: effect of combined alpha- and beta-adrenergic blockade.
    Crystal GJ; Downey HF; Bashour FA
    J Cardiovasc Pharmacol; 1981; 3(2):317-27. PubMed ID: 6166803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of K+ATP channels in local metabolic coronary vasodilation.
    Richmond KN; Tune JD; Gorman MW; Feigl EO
    Am J Physiol; 1999 Dec; 277(6):H2115-23. PubMed ID: 10600828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carotid chemoreceptor reflex parasympathetic coronary vasodilation in the dog.
    Ito BR; Feigl EO
    Am J Physiol; 1985 Dec; 249(6 Pt 2):H1167-75. PubMed ID: 3934985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Demonstration of specific dopamine-1 receptor-mediated coronary vasodilation in the anesthetized dog.
    Kopia GA; Valocik RE
    J Pharmacol Exp Ther; 1989 Jan; 248(1):215-21. PubMed ID: 2563287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis.
    Gurevicius J; Salem MR; Metwally AA; Silver JM; Crystal GJ
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of vasoactive intestinal polypeptide on the canine cardiovascular system.
    Unverferth DV; O'Dorisio TM; Muir WW; White J; Miller MM; Hamlin RL; Magorien RD
    J Lab Clin Med; 1985 Nov; 106(5):542-50. PubMed ID: 4056568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EDRF and norepinephrine-induced vasodilation in the canine coronary circulation.
    Van Bibber R; Traub O; Kroll K; Feigl EO
    Am J Physiol; 1995 May; 268(5 Pt 2):H1973-81. PubMed ID: 7771547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of K+ATP channels in coronary vasodilation during exercise.
    Duncker DJ; Van Zon NS; Altman JD; Pavek TJ; Bache RJ
    Circulation; 1993 Sep; 88(3):1245-53. PubMed ID: 8353886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart.
    Quyyumi AA; Dakak N; Andrews NP; Gilligan DM; Panza JA; Cannon RO
    Circulation; 1995 Aug; 92(3):320-6. PubMed ID: 7634444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of coronary artery pressure on transmural distribution of adrenergic coronary vasoconstriction in the dog.
    Buffington CW; Feigl EO
    Circ Res; 1983 Nov; 53(5):613-21. PubMed ID: 6313252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adrenergic coronary vasoconstriction in the presence of coronary stenosis in the dog.
    Buffington CW; Feigl EO
    Circ Res; 1981 Mar; 48(3):416-23. PubMed ID: 7460214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric oxide formation contributes to beta-adrenergic dilation of resistance coronary vessels in conscious dogs.
    Parent R; al-Obaidi M; Lavallée M
    Circ Res; 1993 Aug; 73(2):241-51. PubMed ID: 8392445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in the dog.
    Altman JD; Kinn J; Duncker DJ; Bache RJ
    Cardiovasc Res; 1994 Jan; 28(1):119-24. PubMed ID: 8111780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of fentanyl on coronary blood flow distribution and myocardial oxygen consumption in the dog.
    Hirsch LJ; Rooney MW; Mathru M; Rao TL
    J Cardiothorac Vasc Anesth; 1993 Feb; 7(1):50-4. PubMed ID: 8431575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.