These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 2582608)

  • 1. Dynamic structure of the radial glial fiber system of the developing murine cerebral wall. An immunocytochemical analysis.
    Gadisseux JF; Evrard P; Misson JP; Caviness VS
    Brain Res Dev Brain Res; 1989 Nov; 50(1):55-67. PubMed ID: 2582608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic changes in the density of radial glial fibers of the developing murine cerebral wall: a quantitative immunohistological analysis.
    Gadisseux JF; Evrard P; Mission JP; Caviness VS
    J Comp Neurol; 1992 Aug; 322(2):246-54. PubMed ID: 1522252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker.
    Edwards MA; Yamamoto M; Caviness VS
    Neuroscience; 1990; 36(1):121-44. PubMed ID: 2215915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system.
    Misson JP; Austin CP; Takahashi T; Cepko CL; Caviness VS
    Cereb Cortex; 1991; 1(3):221-9. PubMed ID: 1668365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuron migration within the radial glial fiber system of the developing murine cerebrum: an electron microscopic autoradiographic analysis.
    Gadisseux JF; Kadhim HJ; van den Bosch de Aguilar P; Caviness VS; Evrard P
    Brain Res Dev Brain Res; 1990 Mar; 52(1-2):39-56. PubMed ID: 2331800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial process elongation and branching in the developing murine neocortex: a qualitative and quantitative immunohistochemical analysis.
    Takahashi T; Misson JP; Caviness VS
    J Comp Neurol; 1990 Dec; 302(1):15-28. PubMed ID: 2086612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker.
    Misson JP; Edwards MA; Yamamoto M; Caviness VS
    Brain Res Dev Brain Res; 1988 Nov; 44(1):95-108. PubMed ID: 3069243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prenatal gliogenesis in the developing cerebrum of the mouse.
    Choi BH
    Glia; 1988; 1(5):308-16. PubMed ID: 2976394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes.
    deAzevedo LC; Fallet C; Moura-Neto V; Daumas-Duport C; Hedin-Pereira C; Lent R
    J Neurobiol; 2003 Jun; 55(3):288-98. PubMed ID: 12717699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development.
    Vanselow J; Thanos S; Godement P; Henke-Fahle S; Bonhoeffer F
    Brain Res Dev Brain Res; 1989 Jan; 45(1):15-27. PubMed ID: 2917409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study.
    Misson JP; Edwards MA; Yamamoto M; Caviness VS
    Brain Res; 1988 Feb; 466(2):183-90. PubMed ID: 3359310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study.
    Mrzljak L; Uylings HB; Kostovic I; Van Eden CG
    J Comp Neurol; 1988 May; 271(3):355-86. PubMed ID: 2454966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration.
    Weissman T; Noctor SC; Clinton BK; Honig LS; Kriegstein AR
    Cereb Cortex; 2003 Jun; 13(6):550-9. PubMed ID: 12764028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes.
    Voigt T
    J Comp Neurol; 1989 Nov; 289(1):74-88. PubMed ID: 2808761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impairment of radial glial scaffold-dependent neuronal migration and formation of double cortex by genetic ablation of afadin.
    Yamamoto H; Mandai K; Konno D; Maruo T; Matsuzaki F; Takai Y
    Brain Res; 2015 Sep; 1620():139-52. PubMed ID: 25988834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interference with the development of early generated neocortex results in disruption of radial glia and abnormal formation of neocortical layers.
    Noctor SC; Palmer SL; Hasling T; Juliano SL
    Cereb Cortex; 1999 Mar; 9(2):121-36. PubMed ID: 10220225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of Lgl1 Disrupts the Radial Glial Fiber-guided Cortical Neuronal Migration and Causes Subcortical Band Heterotopia in Mice.
    Zhang T; Zhang S; Song X; Zhao X; Hou C; Li Z; Gao J
    Neuroscience; 2019 Feb; 400():132-145. PubMed ID: 30597194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of AChE-positive neuronal projections from basal forebrain to cerebral cortex in organotypic tissue slice cultures.
    Distler PG; Robertson RT
    Brain Res Dev Brain Res; 1992 Jun; 67(2):181-96. PubMed ID: 1511514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of cell and fiber lamination in the mouse superior colliculus.
    Edwards MA; Caviness VS; Schneider GE
    J Comp Neurol; 1986 Jun; 248(3):395-409. PubMed ID: 3722463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of radial glia and radial dendrites during barrel formation in mouse somatosensory cortex.
    Crandall JE; Misson JP; Butler D
    Brain Res Dev Brain Res; 1990 Aug; 55(1):87-94. PubMed ID: 2208642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.