These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 25826244)
1. Large carbon release legacy from bark beetle outbreaks across Western United States. Ghimire B; Williams CA; Collatz GJ; Vanderhoof M; Rogan J; Kulakowski D; Masek JG Glob Chang Biol; 2015 Aug; 21(8):3087-101. PubMed ID: 25826244 [TBL] [Abstract][Full Text] [Related]
2. Mountain pine beetle and forest carbon feedback to climate change. Kurz WA; Dymond CC; Stinson G; Rampley GJ; Neilson ET; Carroll AL; Ebata T; Safranyik L Nature; 2008 Apr; 452(7190):987-90. PubMed ID: 18432244 [TBL] [Abstract][Full Text] [Related]
3. Forest recovery following synchronous outbreaks of spruce and western balsam bark beetle is slowed by ungulate browsing. Andrus RA; Hart SJ; Veblen TT Ecology; 2020 May; 101(5):e02998. PubMed ID: 32012254 [TBL] [Abstract][Full Text] [Related]
4. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Meddens AJ; Hicke JA; Ferguson CA Ecol Appl; 2012 Oct; 22(7):1876-91. PubMed ID: 23210306 [TBL] [Abstract][Full Text] [Related]
5. Relative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USA. Mietkiewicz N; Kulakowski D Ecol Appl; 2016 Dec; 26(8):2523-2535. PubMed ID: 27787956 [TBL] [Abstract][Full Text] [Related]
6. Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula. Lombardero MJ; Ayres MP Environ Entomol; 2011 Oct; 40(5):1007-18. PubMed ID: 22251713 [TBL] [Abstract][Full Text] [Related]
7. Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado. Mietkiewicz N; Kulakowski D; Veblen TT Ecol Appl; 2018 Mar; 28(2):457-472. PubMed ID: 29405527 [TBL] [Abstract][Full Text] [Related]
8. Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States. Kautz M; Anthoni P; Meddens AJH; Pugh TAM; Arneth A Glob Chang Biol; 2018 May; 24(5):2079-2092. PubMed ID: 29105233 [TBL] [Abstract][Full Text] [Related]
9. Future carbon balance of China's forests under climate change and increasing CO2. Ju WM; Chen JM; Harvey D; Wang S J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919 [TBL] [Abstract][Full Text] [Related]
10. Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe? Sommerfeld A; Rammer W; Heurich M; Hilmers T; Müller J; Seidl R J Ecol; 2021 Feb; 109(2):737-749. PubMed ID: 33664526 [TBL] [Abstract][Full Text] [Related]
11. Are bark beetle outbreaks less synchronous than forest Lepidoptera outbreaks? Økland B; Liebhold AM; Bjørnstad ON; Erbilgin N; Krokene P Oecologia; 2005 Dec; 146(3):365-72. PubMed ID: 16151861 [TBL] [Abstract][Full Text] [Related]
12. Effect of prior disturbances on the extent and severity of wildfire in Colorado subalpine forests. Kulakowski D; Veblen TT Ecology; 2007 Mar; 88(3):759-69. PubMed ID: 17503603 [TBL] [Abstract][Full Text] [Related]
13. Spatial configuration matters when removing windfelled trees to manage bark beetle disturbances in Central European forest landscapes. Dobor L; Hlásny T; Rammer W; Zimová S; Barka I; Seidl R J Environ Manage; 2020 Jan; 254():109792. PubMed ID: 31731030 [TBL] [Abstract][Full Text] [Related]
14. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks. Seidl R; Donato DC; Raffa KF; Turner MG Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13075-13080. PubMed ID: 27821739 [TBL] [Abstract][Full Text] [Related]
15. Climate change determines the sign of productivity trends in US forests. Hogan JA; Domke GM; Zhu K; Johnson DJ; Lichstein JW Proc Natl Acad Sci U S A; 2024 Jan; 121(4):e2311132121. PubMed ID: 38227667 [TBL] [Abstract][Full Text] [Related]
16. Complex forest dynamics indicate potential for slowing carbon accumulation in the southeastern United States. Coulston JW; Wear DN; Vose JM Sci Rep; 2015 Jan; 5():8002. PubMed ID: 25614123 [TBL] [Abstract][Full Text] [Related]
17. Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008. Guo Z; Hu H; Li P; Li N; Fang J Sci China Life Sci; 2013 Jul; 56(7):661-71. PubMed ID: 23722235 [TBL] [Abstract][Full Text] [Related]
18. Visitor Preferences for Visual Changes in Bark Beetle-Impacted Forest Recreation Settings in the United States and Germany. Arnberger A; Ebenberger M; Schneider IE; Cottrell S; Schlueter AC; von Ruschkowski E; Venette RC; Snyder SA; Gobster PH Environ Manage; 2018 Feb; 61(2):209-223. PubMed ID: 29273996 [TBL] [Abstract][Full Text] [Related]
19. Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone. Donato DC; Harvey BJ; Romme WH; Simard M; Turner MG Ecol Appl; 2013 Jan; 23(1):3-20. PubMed ID: 23495632 [TBL] [Abstract][Full Text] [Related]
20. Impacts of bark beetle-induced tree mortality on pyrogenic carbon production and heat output in wildfires for fire modeling and global carbon accounting. Howell A; Bretfeld M; Belmont E Sci Total Environ; 2021 Mar; 760():144149. PubMed ID: 33341616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]