These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 25826257)
1. Use of plant woody species electrical potential for irrigation scheduling. Ríos-Rojas L; Morales-Moraga D; Alcalde JA; Gurovich LA Plant Signal Behav; 2015; 10(2):e976487. PubMed ID: 25826257 [TBL] [Abstract][Full Text] [Related]
2. Electrophysiological assessment of water stress in fruit-bearing woody plants. Ríos-Rojas L; Tapia F; Gurovich LA J Plant Physiol; 2014 Jun; 171(10):799-806. PubMed ID: 24877671 [TBL] [Abstract][Full Text] [Related]
3. Daily irrigation attenuates xylem abscisic acid concentration and increases leaf water potential of Pelargonium × hortorum compared with infrequent irrigation. Boyle RK; McAinsh M; Dodd IC Physiol Plant; 2016 Sep; 158(1):23-33. PubMed ID: 26910008 [TBL] [Abstract][Full Text] [Related]
4. Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying. Boyle RK; McAinsh M; Dodd IC Physiol Plant; 2016 Jan; 156(1):84-96. PubMed ID: 25974219 [TBL] [Abstract][Full Text] [Related]
5. Evidence for the transmission of information through electric potentials in injured avocado trees. Oyarce P; Gurovich L J Plant Physiol; 2011 Jan; 168(2):103-8. PubMed ID: 20630616 [TBL] [Abstract][Full Text] [Related]
6. Root to leaf electrical signaling in avocado in response to light and soil water content. Gil PM; Gurovich L; Schaffer B; Alcayaga J; Rey S; Iturriaga R J Plant Physiol; 2008 Jul; 165(10):1070-8. PubMed ID: 17936408 [TBL] [Abstract][Full Text] [Related]
7. Electrical signals in avocado trees: responses to light and water availability conditions. Oyarce P; Gurovich L Plant Signal Behav; 2010 Jan; 5(1):34-41. PubMed ID: 20592805 [TBL] [Abstract][Full Text] [Related]
8. Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Jiménez S; Dridi J; Gutiérrez D; Moret D; Irigoyen JJ; Moreno MA; Gogorcena Y Tree Physiol; 2013 Oct; 33(10):1061-75. PubMed ID: 24162335 [TBL] [Abstract][Full Text] [Related]
9. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit. Paudel I; Naor A; Gal Y; Cohen S Tree Physiol; 2015 Apr; 35(4):425-38. PubMed ID: 25618897 [TBL] [Abstract][Full Text] [Related]
10. Leaf-to-branch scaling of C-gain in field-grown almond trees under different soil moisture regimes. Egea G; González-Real MM; Martin-Gorriz B; Baille A Tree Physiol; 2014 Jun; 34(6):619-29. PubMed ID: 24970267 [TBL] [Abstract][Full Text] [Related]
11. Above- and belowground controls on water use by trees of different wood types in an eastern US deciduous forest. Meinzer FC; Woodruff DR; Eissenstat DM; Lin HS; Adams TS; McCulloh KA Tree Physiol; 2013 Apr; 33(4):345-56. PubMed ID: 23513033 [TBL] [Abstract][Full Text] [Related]
12. Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive. Ben Ahmed C; Magdich S; Ben Rouina B; Boukhris M; Ben Abdullah F J Environ Manage; 2012 Dec; 113():538-44. PubMed ID: 22572465 [TBL] [Abstract][Full Text] [Related]
13. Impact of Laurel Wilt, Caused by Raffaelea lauricola, on Leaf Gas Exchange and Xylem Sap Flow in Avocado, Persea americana. Ploetz RC; Schaffer B; Vargas AI; Konkol JL; Salvatierra J; Wideman R Phytopathology; 2015 Apr; 105(4):433-40. PubMed ID: 25496301 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of sap flow and trunk diameter sensors for irrigation scheduling in early maturing peach trees. Conejero W; Alarcón JJ; García-Orellana Y; Nicolás E; Torrecillas A Tree Physiol; 2007 Dec; 27(12):1753-9. PubMed ID: 17938106 [TBL] [Abstract][Full Text] [Related]
15. Model development for prediction of soil water dynamics in plant production. Hu Z; Jin H; Zhang K Pak J Pharm Sci; 2015 Sep; 28(5 Suppl):1891-6. PubMed ID: 26525032 [TBL] [Abstract][Full Text] [Related]
16. Integrating transient heterogeneity of non-photochemical quenching in shade-grown heterobaric leaves of avocado (Persea americana L.): responses to CO2 concentration, stomatal occlusion, dehydration and relative humidity. Takayama K; King D; Robinson SA; Osmond B Plant Cell Physiol; 2013 Nov; 54(11):1852-66. PubMed ID: 24078766 [TBL] [Abstract][Full Text] [Related]
17. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014 [TBL] [Abstract][Full Text] [Related]
18. Deficit irrigation strategies combined with controlled atmosphere preserve quality in early peaches. Falagán N; Artés F; Gómez PA; Artés-Hernández F; Conejero W; Aguayo E Food Sci Technol Int; 2015 Oct; 21(7):547-56. PubMed ID: 25280939 [TBL] [Abstract][Full Text] [Related]
19. On-line monitoring of plant water status: Validation of a novel sensor based on photon attenuation of radiation through the leaf. Cecilia B; Francesca A; Dalila P; Carlo S; Antonella G; Francesco F; Marco R; Mauro C Sci Total Environ; 2022 Apr; 817():152881. PubMed ID: 34998761 [TBL] [Abstract][Full Text] [Related]
20. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions. Schaub M; Skelly JM; Zhang JW; Ferdinand JA; Savage JE; Stevenson RE; Davis DD; Steiner KC Environ Pollut; 2005 Feb; 133(3):553-67. PubMed ID: 15519730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]