BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25826369)

  • 1. Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria.
    Baranowski P; Jedryczka M; Mazurek W; Babula-Skowronska D; Siedliska A; Kaczmarek J
    PLoS One; 2015; 10(3):e0122913. PubMed ID: 25826369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature Drives Contrasting Alternaria Leaf Spot Epidemic Development in Canola and Mustard Rape from
    Al-Lami HFD; You MP; Barbetti MJ
    Plant Dis; 2020 Jun; 104(6):1668-1674. PubMed ID: 32289246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of lead content in oilseed rape leaves and roots based on deep transfer learning and hyperspectral imaging technology.
    Zhou X; Zhao C; Sun J; Yao K; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122288. PubMed ID: 36608517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of
    Kong W; Zhang C; Cao F; Liu F; Luo S; Tang Y; He Y
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protection of oilseed rape (Brassica napus) toward fungal pathogens by strains of plant-associated Bacillus amyloliquefaciens.
    Danielsson J; Reva O; Meijer J
    Microb Ecol; 2007 Jul; 54(1):134-40. PubMed ID: 17186140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of
    Blagojević J; Vukojević J; Ivanović B; Ivanović Ž
    Plant Dis; 2020 May; 104(5):1378-1389. PubMed ID: 32181722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of acetolactate synthase activity and protein content of oilseed rape (Brassica napus L.) leaves using visible/near-infrared spectroscopy.
    Liu F; Zhang F; Jin Z; He Y; Fang H; Ye Q; Zhou W
    Anal Chim Acta; 2008 Nov; 629(1-2):56-65. PubMed ID: 18940321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Hyperspectral Imaging to Detect Sclerotinia sclerotiorum on Oilseed Rape Stems.
    Kong W; Zhang C; Huang W; Liu F; He Y
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29300315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acuities into tolerance mechanisms via different bioassay during Brassicaceae-Alternaria brassicicola interaction and its impact on yield.
    Munir S; Shahzad AN; Qureshi MK
    PLoS One; 2020; 15(12):e0242545. PubMed ID: 33259527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of physiological and molecular effect of variable virulence of Alternaria brassicae isolates in Brassica juncea, Sinapis alba and Camelina sativa.
    Dixit S; Jangid VK; Grover A
    Plant Physiol Biochem; 2020 Oct; 155():626-636. PubMed ID: 32858425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of oxylipins for control of oilseed rape (Brassica napus) fungal pathogens.
    Granér G; Hamberg M; Meijer J
    Phytochemistry; 2003 May; 63(1):89-95. PubMed ID: 12657302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nondestructive evaluation of Zn content in rape leaves using MSSAE and hyperspectral imaging.
    Fu L; Sun J; Wang S; Xu M; Yao K; Zhou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121641. PubMed ID: 35870430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of lead content in oilseed rape leaves in silicon-free and silicon environments based on deep transfer learning and fluorescence hyperspectral imaging.
    Zhou X; Zhao C; Sun J; Cheng J; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 311():123991. PubMed ID: 38330763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging.
    Zhou X; Zhao C; Sun J; Cao Y; Yao K; Xu M
    Food Chem; 2023 May; 409():135251. PubMed ID: 36586261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence of a lipase in spores of Alternaria brassicicola with a crucial role in the infection of cauliflower leaves.
    Berto P; Comménil P; Belingheri L; Dehorter B
    FEMS Microbiol Lett; 1999 Nov; 180(2):183-9. PubMed ID: 10556710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola.
    Cho Y; Ohm RA; Grigoriev IV; Srivastava A
    Plant J; 2013 Aug; 75(3):498-514. PubMed ID: 23617599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsensor in vivo monitoring of oxidative burst in oilseed rape (Brassica napus L.) leaves infected by Sclerotinia sclerotiorum.
    Xu Q; Liu SY; Zou QJ; Guo XL; Dong XY; Li PW; Song DY; Chen H; Zhao YD
    Anal Chim Acta; 2009 Jan; 632(1):21-5. PubMed ID: 19100878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf position-dependent effect of Alternaria brassicicola development on host cell death, photosynthesis and secondary metabolites in Brassica juncea.
    Macioszek VK; Wielanek M; Morkunas I; Ciereszko I; Kononowicz AK
    Physiol Plant; 2020 Mar; 168(3):601-616. PubMed ID: 31145472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo measurements of changes in pH triggered by oxalic acid in leaf tissue of transgenic oilseed rape.
    Zou QJ; Liu SY; Dong XY; Bi YH; Cao YC; Xu Q; Zhao YD; Chen H
    Phytochem Anal; 2007; 18(4):341-6. PubMed ID: 17623369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced pathogenicity of Leptosphaeria maculans Pycnidiospores from paired co-inoculation of Brassica napus cotyledons with ascospores.
    Li H; Tapper N; Dean N; Barbetti M; Sivasithamparam K
    Ann Bot; 2006 Jun; 97(6):1151-6. PubMed ID: 16533831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.